Skip to main content
Log in

Geometric Roots of –1 in Clifford Algebras Cℓ p,q with p + q ≤ 4

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

It is known that Clifford (geometric) algebra offers a geometric interpretation for square roots of –1 in the form of blades that square to –1. This extends to a geometric interpretation of quaternions as the side face bivectors of a unit cube. Research has been done [1] on the biquaternion roots of –1, abandoning the restriction to blades. Biquaternions are isomorphic to the Clifford (geometric) algebra Cℓ 3 of \({{\mathbb R^3}}\) . All these roots of –1 find immediate applications in the construction of new types of geometric Clifford Fourier transformations.

We now extend this research to general algebras Cℓ p,q . We fully derive the geometric roots of –1 for the Clifford (geometric) algebras with p + q ≤ 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sangwine S.J.: Biquaternion (Complexified Quaternion) Roots of −1. Adv. Appl. Clifford Alg. 16(1), 63–68 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. W. K. Clifford Applications of Grassmann’s Extensive Algebra. American Journal of Mathematics Pure and Applied 1 (1878), 350–358; Online: http://sinai.apphy.u-fukui.ac.jp/gcj/wkconline.html

  3. D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Calculus. Kluwer, 1984.

  4. F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis. Vol. 76 of Research Notes in Mathematics, Pitman Advanced Publishing Program, 1982.

  5. T. Bülow, M. Felsberg and G. Sommer, Non-commutative Hypercomplex Fourier Transforms of Multidimensional Signals. In G. Sommer (ed.), “Geom. Comp. with Cliff. Alg., Theor. Found. and Appl. in Comp. Vision and Robotics” Springer (2001), 187–207.

  6. Li C., McIntosh A., Qian T.: Clifford Algebras, Fourier Transform and Singular Convolution Operators On Lipschitz Surfaces. Revista Matematica Iberoamericana, 10(3), 665–695 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. McIntosh, Clifford Algebras, Fourier Theory, Singular Integrals and Harmonic Functions on Lipschitz Domains. Chapter 1 of J. Ryan (ed.), Clifford Algebras in Analysis and Related Topics, CRC Press, Boca Raton, 1996.

  8. T. Qian, Paley-Wiener Theorems and Shannon Sampling in the Clifford Analysis Setting. In R. Abłamowicz (ed.), “Clifford Algebras - Applications to Mathematics, Physics, and Engineering”, Birkäuser, Basel, (2004), 115–124.

  9. J. Ebling and G. Scheuermann, Clifford Fourier Transform on Vector Fields. IEEE Transactions on Visualization and Computer Graphics, 11 (4) July/August (2005), 469–479.

  10. Mawardi B., Hitzer E.: Clifford Fourier Transformation and Uncertainty Principle for the Clifford algebra Cl 3,0. Adv. Appl. Clifford Alg. 16(1), 41–61 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Hitzer, B. Mawardi, Uncertainty Principle for the Clifford algebra Cℓ n,0, n = 3 (mod 4) based on Clifford Fourier transform. In Springer SCI book series “Applied and Numerical Harmonic Analysis” (2006), 45–54.

  12. Hitzer E., Mawardi B.: Clifford Fourier Transform on Multivector Fields and Uncertainty Principles for Dimensions n = 2(mod 4) and n = 3 (mod 4). Adv. Appl. Clifford Alg. 18(3-4), 715–736 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hitzer E.: Quaternion Fourier Transform on Quaternion Fields and Generalizations. Adv. Appl. Clifford Alg. 17(3), 497–517 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Bülow, Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images. Ph.D. Thesis, Univ. of Kiel, 1999.

  15. M. Felsberg, Low-Level Image Processing with the Structure Multivector. PhD thesis, Univ. of Kiel, 2002.

  16. D. Hestenes, New Foundations for Classical Mechanics. Kluwer, 1999.

  17. D. Hestenes, Space-Time Algebra. Gordon and Breach, 1966.

  18. Li H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2009)

    Google Scholar 

  19. L. Dorst, The Inner Products of Geometric Algebra. In L. Dorst, C. Doran, J. Lasenby (eds.), Birkhäuser, Boston, 2002, 35–46.

  20. Lounesto P.: Clifford Algebra and Spinors 2nd ed. CUP, Cambridge (2006)

    Google Scholar 

  21. Abłamowicz R., Fauser B., Podlaski K., Rembieliński J.: Idempotents of Clifford Algebras. Czechoslovak Journal of Physics, 53(11), 949–954 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  22. R. Abłamowicz, B. Fauser, CLIFFORD - A Maple Package for Clifford Algebra Computations with Bigebra, SchurFkt, GfG - Groebner for Grassmann, Cliplus, Define, GTP, Octonion, SP, SymGroupAlgebra, and code support. http://www.math.tntech.edu/rafal/, December 2008.

  23. Abłamowicz R., Oziewicz Z., Rzewuski J.: Clifford algebra approach to twistors. J. Math. Phys. 23, 231–242 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. R. Abłamowicz, G. Sobczyk, Appendix 7.1 of Lectures on Clifford (Geometric) Algebras and Applications. Birkhäuser, Boston, 2004.

  25. E. Hitzer, Geometric Calculus International – Software. http://sinai.apphy.ufukui.ac.jp/gcj/gc_int.html#software

  26. Said S., Le Bihan N., Sangwine S.J.: Fast complexified quaternion Fourier transform. IEEE Transactions on Signal Processing, 56(4), 1522–1531 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  27. Mawardi B., Hitzer E.: Clifford Algebra Cl(3, 0)-valued Wavelet Transformation, Clifford Wavelet Uncertainty Inequality and Clifford Gabor Wavelets. International Journal of Wavelets, Multiresolution and Information Processing, 5(6), 997–1019 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Hitzer, Real Clifford Algebra Cl(n, 0), n = 2, 3(mod 4) Wavelet Transform. Edited by T. E. Simos et al., AIP Proceedings of ICNAAM 2009, No. 1168 (2009), 781–784.

  29. E. Hitzer, Clifford (Geometric) Algebra Wavelet Transform. In V. Skala and D. Hildenbrand (eds.), Proc. of GraVisMa 2009, 02-04 Sep. 2009, Plzen, Czech Republic, 2009, 94–101. Online: http://gravisma.zcu.cz/GraVisMa-2009/Papers_2009/!_2009_GraVisMa_proceedings-FINAL.pdf

  30. B. Mawardi, E. Hitzer, S. Adji, Two-Dimensional Clifford Windowed Fourier Transform. Accepted for G. Scheuermann, E. Bayro-Corrochano (eds.), Applied Geometric Algebras in Computer Science and Engineering, Springer, New York, 2009.

  31. B. Mawardi, E. Hitzer, R. Ashino, R. Vaillancourt, Windowed Fourier transform of two-dimensional quaternionic signals. Appl. Math. and Computation, 216, Iss. 8, 2366–2379, 15 June 2010.

  32. Psalm 92, verse 5, New Int. Version of the Bible. www.biblegateway.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Hitzer.

Additional information

Soli Deo Gloria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hitzer, E., Abłamowicz, R. Geometric Roots of –1 in Clifford Algebras Cℓ p,q with p + q ≤ 4. Adv. Appl. Clifford Algebras 21, 121–144 (2011). https://doi.org/10.1007/s00006-010-0240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-010-0240-x

Mathematics Subject Classification (2010)

Keywords

Navigation