Skip to main content

Advertisement

Log in

Genetic Factors of Diabetes

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Monogenic diabetes is a rare genetic type of diabetes caused by pancreatic β-cells dysfunction. All subtypes of monogenic diabetes are recognized in the pediatric population. They include maturity onset diabetes of the young, permanent neonatal diabetes mellitus and rare syndromic forms of diabetes. An early and proper diagnosis allows to implement an optimal treatment, leads to improved metabolic control and amelioration of related disabilities as well as increases the quality of life of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AS:

Alström syndrome

DEND:

Developmental delay, epilepsy and neonatal diabetes syndrome

GCK :

Glucokinase

HNF1A :

Hepatocyte nuclear factor-1-alpha

HNF1B :

Hepatocyte nuclear factor-1-beta

HNF4A :

Hepatocyte nuclear factor-4-alpha

i-DEND:

Intermediate developmental delay, epilepsy and neonatal diabetes syndrome

MODY:

Maturity onset diabetes of the young

NGS:

Next-generation sequencing

PDX1 :

Pancreas/duodenum homeobox protein

PNDM:

Permanent neonatal diabetes mellitus

WFS:

Wolfram syndrome

References

  • Alkorta-Aranburu G, Carmody D, Cheng YW et al (2014) Phenotypic heterogeneity in monogenic diabetes: the clinical and diagnostic utility of a gene panel-based next-generation sequencing approach. Mol Genet Metab 113:315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amed S, Oram R (2016) Maturity-onset diabetes of the young (MODY): making the right diagnosis to optimize treatment. Can J Diabetes 40:449–454

    Article  PubMed  Google Scholar 

  • Babenko AP, Polak M, Cave H et al (2006) Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 355:456–466

    Article  CAS  PubMed  Google Scholar 

  • Barrett TG, Bundey SE (1997) Wolfram (DIDMOAD) syndrome. J Med Genet 34:838–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnefond A, Philippe J, Durand E et al (2012) Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS One 7:e37423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borowiec M, Antosik K, Fendler W et al (2012) Novel glucokinase mutations in patients with monogenic diabetes—clinical outline of GCK-MD and potential for founder effect in Slavic population. Clin Genet 81:278–283

    Article  CAS  PubMed  Google Scholar 

  • Bowman P, Flanagan SE, Edghill EL et al (2012) Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia 55:123–127

    Article  CAS  PubMed  Google Scholar 

  • Colclough K, Bellanne-Chantelot C, Saint-Martin C et al (2013) Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. Hum Mutat 34:669–685

    Article  CAS  PubMed  Google Scholar 

  • Cryns K, Sivakumaran TA, Van den Ouweland JM et al (2003) Mutational spectrum of the WFS1 gene in Wolfram syndrome, nonsyndromic hearing impairment, diabetes mellitus, and psychiatric disease. Hum Mutat 22:275–287

    Article  CAS  PubMed  Google Scholar 

  • Edghill EL, Minton JA, Groves CJ et al (2010) Sequencing of candidate genes selected by beta cell experts in monogenic diabetes of unknown aetiology. JOP 11:14–17

    PubMed  Google Scholar 

  • Ellard S, Flanagan SE, Girard CA et al (2007) Permanent neonatal diabetes caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects. Am J Hum Genet 81:375–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellard S, Allen HL, De Franco E et al (2013) Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia 56:1958–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fajans SS, Bell GI, Polonsky KS (2001) Mechanisms of disease: molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 345:971–980

    Article  CAS  PubMed  Google Scholar 

  • Farmer A, Ayme S, de Heredia ML et al (2013) EURO-WABB: an EU rare diseases registry for Wolfram syndrome, Alstrom syndrome and Bardet-Biedl syndrome. BMC Pediatr 13:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Fendler W, Borowiec M, Baranowska-Jazwiecka A et al (2012) Prevalence of monogenic diabetes amongst Polish children after a nationwide genetic screening campaign. Diabetologia 55:2631–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fendler W, Pietrzak I, Brereton MF et al (2013) Switching to sulphonylureas in children with iDEND syndrome caused by KCNJ11 mutations results in improved cerebellar perfusion. Diabetes Care 36:2311–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandica RG, Chung WK, Deng LY et al (2015) Identifying monogenic diabetes in a pediatric cohort with presumed type 1 diabetes. Pediatr Diabetes 16:227–233

    Article  CAS  PubMed  Google Scholar 

  • Garin I, Edghill EL, Akerman I et al (2010) Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc Natl Acad Sci USA 107:3105–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gloyn AL, Pearson ER, Antcliff JF et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849

    Article  CAS  PubMed  Google Scholar 

  • Haliloglu B, Hysenaj G, Atay Z et al (2016) GCK gene mutations are a common cause of childhood-onset MODY (maturity-onset diabetes of the young) in Turkey. Clin Endocrinol 85:393–399

    Article  CAS  Google Scholar 

  • Hattersley AT, Ashcroft FM (2005) Activating mutations in Kir6.2 and neonatal diabetes—new clinical syndromes, new scientific insights, and new therapy. Diabetes 54:2503–2513

    Article  CAS  PubMed  Google Scholar 

  • Khan SA, Muhammad N, Khan MA et al (2016) Genetics of human Bardet–Biedl syndrome, an updates. Clin Genet 90:3–15

    Article  CAS  PubMed  Google Scholar 

  • Kleinberger JW, Pollin TI (2015) Undiagnosed MODY: time for action. Curr Diab Rep 15:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang V, Light PE (2010) The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying neonatal diabetes. Pharmgenom Pers Med 3:145–161

    CAS  Google Scholar 

  • Marshall JD, Beck S, Maffei P et al (2007a) Alstrom syndrome. Eur J Hum Genet 15:1193–1202

    Article  CAS  PubMed  Google Scholar 

  • Marshall JD, Hinman EG, Collin GB et al (2007b) Spectrum of ALMS1 variants and evaluation of genotype-phenotype correlations in Alstrom syndrome. Hum Mutat 28:1114–1123

    Article  CAS  PubMed  Google Scholar 

  • Mlynarski W, Tarasov AI, Gach A et al (2007) Sulfonylurea improves CNS function in a case of intermediate DEND syndrome caused by a mutation in KCNJ11. Nat Clin Pract Neurol 3:640–645

    Article  CAS  PubMed  Google Scholar 

  • Naylor RN, Greeley SA, Bell GI et al (2011) Genetics and pathophysiology of neonatal diabetes mellitus. J Diabetes Investig 2:158–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Njolstad PR, Sovik O, Cuesta-Munoz A et al (2001) Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med 344:1588–1592

    Article  CAS  PubMed  Google Scholar 

  • Njolstad PR, Sagen JV, Bjorkhaug L et al (2003) Permanent neonatal diabetes caused by glucokinase deficiency: inborn error of the glucose-insulin signaling pathway. Diabetes 52:2854–2860

    Article  CAS  PubMed  Google Scholar 

  • Osbak KK, Colclough K, Saint-Martin C et al (2009) Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 30:1512–1526

    Article  CAS  PubMed  Google Scholar 

  • Pearson ER, Starkey BJ, Powell RJ et al (2003) Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 362:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Philippe J, Derhourhi M, Durand E et al (2015) What is the best NGS enrichment method for the molecular diagnosis of monogenic diabetes and obesity? PLoS One 10:e0143373

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubio-Cabezas O, Hattersley AT, Njolstad PR et al (2014) The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 15(Suppl 20):47–64

    Article  CAS  PubMed  Google Scholar 

  • Sagen JV, Raeder H, Hathout E et al (2004) Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2—patient characteristics and initial response to sulfonylurea therapy. Diabetes 53:2713–2718

    Article  CAS  PubMed  Google Scholar 

  • Schwitzgebel VM (2014) Many faces of monogenic diabetes. J Diabetes Investig 5:121–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepherd M, Shields B, Hammersley S et al (2016) Systematic population screening, using biomarkers and genetic testing, identifies 2.5% of the U.K. Pediatric diabetes population with monogenic diabetes. Diabetes Care pii: dc160645

  • Shimomura K, Girard CA, Proks P et al (2006) Mutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce different functional effects. Diabetes 55:705–1712

    Article  Google Scholar 

  • Siddiqui K, Musambil M, Nazir N (2015) Maturity onset diabetes of the young (MODY)-history, first case reports and recent advances. Gene 555:66–71

    Article  CAS  PubMed  Google Scholar 

  • Stoy J, Edghill EL, Flanagan SE et al (2007) Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA 104:15040–15044

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoy J, Steiner DF, Park SY et al (2010) Clinical and molecular genetics of neonatal diabetes due to mutations in the insulin gene. Rev Endocr Metab Disord 11:205–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Urano F (2016) Wolfram syndrome: diagnosis, management, and treatment. Curr Diab Rep 16:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaxillaire M, Froguel P (2009) Monogenic forms of diabetes mellitus: an update. Endocrinol Nutr 56(Suppl 4):26–29

    Article  PubMed  Google Scholar 

  • Zmyslowska A, Borowiec M, Fendler W et al (2014) The prevalence of Wolfram syndrome in a paediatric population with diabetes. Endokrynol Pol 65:295–297

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the National Science Centre, Project No. 2011/01/N/NZ5/02758 and 2013/09/B/NZ5/00779.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Borowiec.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antosik, K., Borowiec, M. Genetic Factors of Diabetes. Arch. Immunol. Ther. Exp. 64 (Suppl 1), 157–160 (2016). https://doi.org/10.1007/s00005-016-0432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-016-0432-8

Keywords

Navigation