Skip to main content

Advertisement

Log in

The Transcription Factor PU.1 is a Critical Regulator of Cellular Communication in the Immune System

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

PU.1 is an E26 transformation-specific family transcription factor that is required for development of the immune system. PU.1 functions at both early and late stages of lymphoid and myeloid differentiation. At least 110 direct target genes of PU.1 have been identified since its discovery in 1988. We used the published literature to determine if aspects of PU.1 function can be inferred from the identity of target genes that are directly activated. This analysis revealed that 61% of described PU.1 target genes encode extracellular proteins or transmembrane proteins, most of which are involved in cellular communication. The genes activated by PU.1 can be grouped into pathways based on function. Specific examples of cellular communication pathways regulated by PU.1 include (1) antibodies and antibody receptors, (2) cytokines and cytokine receptors regulating leukocyte growth and development, and (3) cytokines and cytokine receptors regulating inflammation. As a consequence of mutation or repression of the gene encoding PU.1, hematopoietic progenitors may be generated but there is a “failure to thrive” because they cannot interact with their environment. The loss of cellular communication caused by reduced PU.1 levels can lead to leukemia. In summary, PU.1 is a critical regulator of cellular communication in the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ChIP:

Chromatin immunoprecipitation

ETS:

E26 transformation-specific

IPA:

Ingenuity Pathway Analysis

miR:

microRNA

Ig:

Immunoglobulin

Fc:

Fragment constant

IL:

Interleukin

AML:

Acute myeloid leukemia

References

  • Akagawa E, Muto A, Arai K et al (2003) Analysis of the 5′ promoters for human IL-3 and GM-CSF receptor alpha genes. Biochem Biophys Res Commun 300:600–608

    Article  PubMed  CAS  Google Scholar 

  • Anderson MK, Weiss AH, Hernandez-Hoyos G et al (2002) Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T cell development at the pro-T cell stage. Immunity 16:285–296

    Article  PubMed  CAS  Google Scholar 

  • Arinobu Y, Mizuno S, Chong Y et al (2007) Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1:416–427

    Article  PubMed  CAS  Google Scholar 

  • Back J, Dierich A, Bronn C et al (2004) PU.1 determines the self-renewal capacity of erythroid progenitor cells. Blood 103:3615–3623

    Article  PubMed  CAS  Google Scholar 

  • Back J, Allman D, Chan S et al (2005) Visualizing PU.1 activity during hematopoiesis. Exp Hematol 33:395–402

    Article  PubMed  CAS  Google Scholar 

  • Banerji J, Olson L, Schaffner W (1983) A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33:729–740

    Article  PubMed  CAS  Google Scholar 

  • Becker C, Wirtz S, Ma X et al (2001) Regulation of IL-12 p40 promoter activity in primary human monocytes: roles of NF-kappaB, CCAAT/enhancer-binding protein, and PU.1 and identification of a novel repressor element (GA-12) that responds to IL-4 and prostaglandin E(2). J Immunol 167:2608–2618

    PubMed  CAS  Google Scholar 

  • Bonadies N, Pabst T, Mueller BU (2010) Heterozygous deletion of the PU.1 locus in human AML. Blood 115:331–334

    Article  PubMed  CAS  Google Scholar 

  • Buras JA, Reenstra WR et al (1995) NF beta A, a factor required for maximal interleukin-1beta gene expression is identical to the ets family member PU.1. Mol Immunol 32:541–554

    Article  PubMed  CAS  Google Scholar 

  • Carotta S, Dakic A, D’Amico A et al (2010) The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 32:628–641

    Article  PubMed  CAS  Google Scholar 

  • Chang HC, Sehra S, Goswami R et al (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11:527–534

    Article  PubMed  CAS  Google Scholar 

  • Colucci F, Samson SI, DeKoter RP et al (2001) Differential requirement for the transcription factor PU.1 in the generation of natural killer cells versus B and T cells. Blood 97:2625–2632

    Article  PubMed  CAS  Google Scholar 

  • Cook WD, McCaw BJ, Herring C et al (2004) PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood 104:3437–3444

    Article  PubMed  CAS  Google Scholar 

  • Dahl R, Walsh JC, Lancki D et al (2003) Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol 4:1029–1036

    Article  PubMed  CAS  Google Scholar 

  • Dahl R, Iyer SR, Owens KS et al (2007) The transcriptional repressor GFI-1 antagonizes PU.1 activity through protein–protein interaction. J Biol Chem 282:6473–6483

    Article  PubMed  CAS  Google Scholar 

  • Dakic A, Metcalf D, Di Rago L et al (2005) PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med 201:1487–1502

    Article  PubMed  CAS  Google Scholar 

  • Dakic A, Wu L, Nutt SL (2007) Is PU.1 a dosage-sensitive regulator of haemopoietic lineage commitment and leukaemogenesis? Trends Immunol 28:108–114

    Article  PubMed  CAS  Google Scholar 

  • DeKoter RP, Singh H (2000) Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288:1439–1441

    Article  PubMed  CAS  Google Scholar 

  • DeKoter RP, Walsh JC, Singh H (1998) PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J 17:4456–4468

    Article  PubMed  CAS  Google Scholar 

  • DeKoter RP, Lee H-J, Singh H (2002) PU.1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 16:297–309

    Article  PubMed  CAS  Google Scholar 

  • DeKoter RP, Geadah M, Khoosal S et al (2010) Regulation of follicular B cell differentiation by the related E26 transformation-specific transcription factors PU.1, Spi-B, and Spi-C. J Immunol 185:7374–7384

    Article  PubMed  CAS  Google Scholar 

  • Ebralidze AK, Guibal FC, Steidl U et al (2008) PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element. Genes Dev 22:2085–2092

    Article  PubMed  CAS  Google Scholar 

  • Eichbaum QG, Iyer R, Raveh DP et al (1994) Restriction of interferon gamma responsiveness and basal expression of the myeloid human Fc gamma R1b gene is mediated by a functional PU.1 site and a transcription initiator consensus. J Exp Med 179:1985–1996

    Article  PubMed  CAS  Google Scholar 

  • Eisenbeis CF, Singh H, Storb U (1993) PU.1 is a component of a multiprotein complex which binds an essential site in the murine immunoglobulin lambda-2–4 enhancer. Mol Cell Biol 13:6452–6461

    PubMed  CAS  Google Scholar 

  • Ellis SL, Gysbers V, Manders PM et al (2010) The cell-specific induction of CXC chemokine ligand 9 mediated by IFN-gamma in microglia of the central nervous system is determined by the myeloid transcription factor PU.1. J Immunol 185:1864–1877

    Article  PubMed  CAS  Google Scholar 

  • Escalante CR, Brass AL, Pongubala JM et al (2002) Crystal structure of PU.1/IRF-4/DNA ternary complex. Mol Cell 10:1097–1105

    Article  PubMed  CAS  Google Scholar 

  • Feinman R, Qiu WQ, Pearse RN et al (1994) PU.1 and an HLH family member contribute to the myeloid-specific transcription of the Fc-gamma-RIIIa promoter. EMBO J 13:3852–3860

    PubMed  CAS  Google Scholar 

  • Fisher RC, Lovelock JD, Scott EW (1999) A critical role for PU.1 in homing and long-term engraftment by hematopoietic stem cells in the bone marrow. Blood 94:1283–1290

    PubMed  CAS  Google Scholar 

  • Fukai T, Nishiyama C, Kanada S et al (2009) Involvement of PU.1 in the transcriptional regulation of TNF-alpha. Biochem Biophys Res Commun 388:102–106

    Article  PubMed  CAS  Google Scholar 

  • Galloway JL, Wingert RA, Thisse C et al (2005) Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Dev Cell 8:109–116

    Article  PubMed  CAS  Google Scholar 

  • Ghisletti S, Barozzi I, Mietton F et al (2010) Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32:317–328

    Article  PubMed  CAS  Google Scholar 

  • Grove M, Plumb M (1993) C/EBP, NF-kappa B, and c-Ets family members and transcriptional regulation of the cell-specific and inducible macrophage inflammatory protein 1 alpha immediate-early gene. Mol Cell Biol 13:5276–5289

    PubMed  CAS  Google Scholar 

  • Gupta P, Gurudutta GU, Saluja D et al (2009) PU.1 and partners: regulation of haematopoietic stem cell fate in normal and malignant haematopoiesis. J Cell Mol Med 13:4349–4363

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  • Heinz S, Benner C, Spann N et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589

    Article  PubMed  CAS  Google Scholar 

  • Henkel G, Brown MA (1994) PU.1 and GATA: components of a mast cell-specific interleukin 4 intronic enhancer. Proc Natl Acad Sci USA 91:7737–7741

    Article  PubMed  CAS  Google Scholar 

  • Hohaus S, Petrovick MS, Voso MT et al (1995) PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene. Mol Cell Biol 15:5830–5845

    PubMed  CAS  Google Scholar 

  • Hoogenkamp M, Krysinska H, Ingram R et al (2007) The Pu.1 locus is differentially regulated at the level of chromatin structure and noncoding transcription by alternate mechanisms at distinct developmental stages of hematopoiesis. Mol Cell Biol 27:7425–7438

    Article  PubMed  CAS  Google Scholar 

  • Houston IB, Huang KJ, Jennings SR et al (2007a) PU.1 immortalizes hematopoietic progenitors in a GM-CSF-dependent manner. Exp Hematol 35:374–384

    Article  PubMed  CAS  Google Scholar 

  • Houston IB, Kamath MB, Schweitzer BL et al (2007b) Reduction in PU.1 activity results in a block to B cell development, abnormal myeloid proliferation, and neonatal lethality. Exp Hematol 35:1056–1068

    Article  PubMed  CAS  Google Scholar 

  • Hromas R, Orazi A, Neiman RS et al (1993) Hematopoietic lineage-and stage-restricted expression of the ETS oncogene family member PU.1. Blood 82:2998–3004

    PubMed  CAS  Google Scholar 

  • Iwasaki H, Somoza C, Shigematsu H et al (2005) Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106:1590–1600

    Article  PubMed  CAS  Google Scholar 

  • Jundt F, Kley K, Anagnostopoulos I et al (2002) Loss of PU.1 expression is associated with defective immunoglobulin transcription in Hodgkin and Reed-Sternberg cells of classical Hodgkin disease. Blood 99:3060–3062

    Article  PubMed  CAS  Google Scholar 

  • Kamath MB, Houston IB, Janovski AJ et al (2008) Dose-dependent repression of T-cell and natural killer cell genes by PU.1 enforces myeloid and B-cell identity. Leukemia 22:1214–1225

    Article  PubMed  CAS  Google Scholar 

  • Kim YM, Kang HS, Paik SG et al (1999) Roles of IFN consensus sequence binding protein and PU.1 in regulating IL-18 gene expression. J Immunol 163:2000–2007

    PubMed  CAS  Google Scholar 

  • Klemsz MJ, Maki RA (1996) Activation of transcription by PU.1 requires both acidic and glutamine domains. Mol Cell Biol 16:390–397

    PubMed  CAS  Google Scholar 

  • Klemsz MJ, McKercher SR, Celada A et al (1990) The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61:113–124

    Article  PubMed  CAS  Google Scholar 

  • Kodandapani R, Pio F, Ni CZ et al (1996) A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex [published erratum appears in Nature 1998, 392:630]. Nature 380:456–460

    Article  PubMed  CAS  Google Scholar 

  • Kominato Y, Galson PL, Waterman WR et al (1995) Monocyte expression of the human prointerleukin 1β gene (IL-1β) is dependent on promoter sequences which bind the hematopoietic transcription factor Spi-1/PU.1. Mol Cell Biol 15:58–68

    PubMed  CAS  Google Scholar 

  • Kusy S, Gault N, Ferri F et al (2011) Adult hematopoiesis is regulated by TIF1gamma, a repressor of TAL1 and PU.1 transcriptional activity. Cell Stem Cell 8:412–425

    Article  PubMed  CAS  Google Scholar 

  • Laslo P, Spooner CJ, Warmflash A et al (2006) Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126:755–766

    Article  PubMed  CAS  Google Scholar 

  • Leddin M, Perrod C, Hoogenkamp M et al (2011) Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells. Blood 117:2827–2838

    Article  PubMed  CAS  Google Scholar 

  • Link DC, Kunter G, Kasai Y et al (2007) Distinct patterns of mutations occurring in de novo AML versus AML arising in the setting of severe congenital neutropenia. Blood 110:1648–1655

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Ma X (2006) Interferon regulatory factor 8 regulates RANTES gene transcription in cooperation with interferon regulatory factor-1, NF-kappaB, and PU.1. J Biol Chem 281:19188–19195

    Article  PubMed  CAS  Google Scholar 

  • McKercher SR, Torbett BE, Anderson KL et al (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15:5647–5658

    PubMed  CAS  Google Scholar 

  • Medina KL, Pongubala JM, Reddy KL et al (2004) Assembling a gene regulatory network for specification of the B cell fate. Dev Cell 7:607–617

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D, Dakic A, Mifsud S et al (2006) Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia. Proc Natl Acad Sci USA 103:1486–1491

    Article  PubMed  CAS  Google Scholar 

  • Moreau-Gachelin F, Tavitian A, Tambourin P (1988) Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 331:277–280

    Article  PubMed  CAS  Google Scholar 

  • Moreau-Gachelin F, Wendling F, Molina T et al (1996) Spi-1/PU.1 transgenic mice develop multistep erythroleukemias. Mol Cell Biol 16:2453–2463

    PubMed  CAS  Google Scholar 

  • Mueller BU, Pabst T, Osato M et al (2002) Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 100:998–1007

    Article  PubMed  CAS  Google Scholar 

  • Mueller BU, Pabst T, Fos J et al (2006) ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression. Blood 107:3330–3338

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG, Zhang J, Kasper LH et al (2011) CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471:235–239

    Article  PubMed  CAS  Google Scholar 

  • Natoli G, Ghisletti S, Barozzi I (2011) The genomic landscapes of inflammation. Genes Dev 25:101–106

    Article  PubMed  CAS  Google Scholar 

  • Nelsen B, Tian G, Erman B et al (1993) Regulation of lymphoid-specific immunoglobulin μ heavy chain gene enhancer by ETS-domain proteins. Science 261:82–86

    Article  PubMed  CAS  Google Scholar 

  • Nerlov C, Querfurth E, Kulessa H et al (2000) GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood 95:2543–2551

    PubMed  CAS  Google Scholar 

  • Nishii K, Kita K, Miwa H et al (2000) Expression of B cell-associated transcription factors in B-cell precursor acute lymphoblastic leukemia cells: association with PU.1 expression, phenotype, and immunogenotype. Int J Hematol 71:372–378

    PubMed  CAS  Google Scholar 

  • Nishiyama C, Hasegawa M, Nishiyama M et al (2002) Regulation of human Fc epsilon RI alpha-chain gene expression by multiple transcription factors. J Immunol 168:4546–4552

    PubMed  CAS  Google Scholar 

  • Nutt SL, Metcalf D, D’Amico A et al (2005) Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med 201:221–231

    Article  PubMed  CAS  Google Scholar 

  • O’Connell RM, Rao DS, Chaudhuri AA et al (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205:585–594

    Article  PubMed  CAS  Google Scholar 

  • Pahl HL, Scheibe RJ, Zhang DE et al (1993) The proto-oncogene PU.1 regulates expression of the myeloid-specific CD11b promoter. J Biol Chem 268:5014–5020

    PubMed  CAS  Google Scholar 

  • Pawlitzky I, Angeles CV, Siegel AM et al (2006) Identification of a candidate regulatory element within the 5′ flanking region of the mouse Igh locus defined by pro-B cell-specific hypersensitivity associated with binding of PU.1, Pax5, and E2A. J Immunol 176:6839–6851

    PubMed  CAS  Google Scholar 

  • Polli M, Dakic A, Light A et al (2005) The development of functional B lymphocytes in conditional PU.1 knock-out mice. Blood 106:2083–2090

    Article  PubMed  CAS  Google Scholar 

  • Pongubala JM, Nagulapalli S, Klemsz MJ et al (1992) PU.1 recruits a second nuclear factor to a site important for immunoglobulin kappa 3′ enhancer activity. Mol Cell Biol 12:368–378

    PubMed  CAS  Google Scholar 

  • Pongubala JM, van Beveren C, Nagulapalli S et al (1993) Effect of PU.1 phosphorylation on interaction with NF-EM5 and transcriptional activation. Science 259:1622–1625

    Article  PubMed  CAS  Google Scholar 

  • Ray-Gallet D, Mao C, Tavitian A et al (1995) DNA-binding specificities of Spi-1/PU.1 and Spi-B transcription factors and identification of a Spi-1/Spi-B binding site in the c-fes/c/fps promoter. Oncogene 11:303–313

    PubMed  CAS  Google Scholar 

  • Rehli M, Poltorak A, Schwarzfischer L et al (2000) PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene. J Biol Chem 275:9773–9781

    Article  PubMed  CAS  Google Scholar 

  • Rhodes J, Hagen A, Hsu K et al (2005) Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell 8:97–108

    Article  PubMed  CAS  Google Scholar 

  • Roger T, Miconnet I, Schiesser AL et al (2005) Critical role for Ets, AP-1 and GATA-like transcription factors in regulating mouse Toll-like receptor 4 (Tlr4) gene expression. Biochem J 387(Pt 2):355–365

    PubMed  CAS  Google Scholar 

  • Rosenbauer F, Koschmieder S, Steidl U et al (2005) Effect of transcription-factor concentrations on leukemic stem cells. Blood 106:1519–1524

    Article  PubMed  CAS  Google Scholar 

  • Rosmarin AG, Caprio DG, Kirsch DG et al (1995) GABP and PU.1 compete for binding, yet cooperate to increase CD18 (β2 leukocyte integrin) transcription. J Biol Chem 270:23627–23633

    Article  PubMed  CAS  Google Scholar 

  • Ross IL, Dunn TL, Yue X et al (1994) Comparison of the expression and function of the transcription factor PU.1 (SPI-1 proto-oncogene) between murine macrophages and B lymphocytes. Oncogene 9:121–132

    PubMed  CAS  Google Scholar 

  • Schroder K, Lichtinger M, Irvine KM et al (2007) PU.1 and ICSBP control constitutive and IFN-gamma-regulated Tlr9 gene expression in mouse macrophages. J Leukoc Biol 81:1577–1590

    Article  PubMed  CAS  Google Scholar 

  • Schuetze S, Stenberg PE, Kabat D (1993) The Ets-related transcription factor PU.1 immortalizes erythroblasts. Mol Cell Biol 13:5670–5678

    PubMed  CAS  Google Scholar 

  • Schwarzenbach H, Newell JW, Matthias P (1995) Involvement of the Ets family factor PU.1 in the activation of immunoglobulin promoters. J Biol Chem 270:898–907

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer BL, DeKoter RP (2004) Analysis of gene expression and Ig transcription in PU.1/Spi-B-deficient progenitor B cell lines. J Immunol 172:144–154

    PubMed  CAS  Google Scholar 

  • Scott EW, Simon MC, Anastasi J et al (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265:1573–1577

    Article  PubMed  CAS  Google Scholar 

  • Shin MK, Koshland ME (1993) Ets-related protein PU.1 regulates expression of the immunoglobulin J-chain gene through a novel Ets-binding element. Genes Dev 7:2006–2015

    Article  PubMed  CAS  Google Scholar 

  • Singh H, DeKoter RP, Walsh JC (1999) PU.1, a shared transcriptional regulator of lymphoid and myeloid cell fates. Cold Spring Harb Symp Quant Biol 64:13–20

    Article  PubMed  CAS  Google Scholar 

  • Smith LT, Hohaus S, Gonzalez DA et al (1996) PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood 88:1234–1247

    PubMed  CAS  Google Scholar 

  • Smith MF Jr, Carl VS, Lodie T et al (1998) Secretory interleukin-1 receptor antagonist gene expression requires both a PU.1 and a novel composite NF-kappaB/PU.1/GA-binding protein binding site. J Biol Chem 273:24272–24279

    Article  PubMed  CAS  Google Scholar 

  • Spooner CJ, Cheng JX, Pujadas E et al (2009) A recurrent network involving the transcription factors PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates. Immunity 31:576–586

    Article  PubMed  CAS  Google Scholar 

  • Stopka T, Amanatullah DF, Papetti M et al (2005) PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J 24:3712–3723

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  PubMed  CAS  Google Scholar 

  • Tissieres P, Araud T, Ochoda A et al (2009) Cooperation between PU.1 and CAAT/enhancer-binding protein beta is necessary to induce the expression of the MD-2 gene. J Biol Chem 284:26261–26272

    Article  PubMed  CAS  Google Scholar 

  • van Dijk TB, Baltus B, Caldenhoven E et al (1998) Cloning and characterization of the human interleukin-3 (IL-3)/IL-5/granulocyte-macrophage colony-stimulating factor receptor betac gene: regulation by Ets family members. Blood 15:3636−3646

    Google Scholar 

  • Vangala RK, Heiss-Neumann MS, Rangatia JS et al (2003) The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 101:270–277

    Article  PubMed  CAS  Google Scholar 

  • Vigorito E, Perks KL, Abreu-Goodger C et al (2007) MicroRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27:1–13

    Article  CAS  Google Scholar 

  • Walter MJ, Park JS, Ries RE et al (2005) Reduced PU.1 expression causes myeloid progenitor expansion and increased leukemia penetrance in mice expressing PML-RARalpha. Proc Natl Acad Sci USA 102:12513–12518

    Article  PubMed  CAS  Google Scholar 

  • Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68:3077–3080 (discussion 3080)

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson NC, Navarro J (1999) PU.1 regulates the CXCR1 promoter. J Biol Chem 274:438–443

    Article  PubMed  CAS  Google Scholar 

  • Ye M, Ermakova O, Graf T (2005) PU.1 is not strictly required for B cell development and its absence induces a B-2 to B-1 cell switch. J Exp Med 202:1411–1422

    Article  PubMed  CAS  Google Scholar 

  • Zhang DE, Hetherington CJ, Chen HM et al (1994) The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol 14:373–381

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kristen Sokalski, Marek Gruca, and Stephen Li for critically reading the manuscript. This work was supported by Canadian Institutes of Health Research grant no. 106581.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney P. DeKoter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 119 kb)

About this article

Cite this article

Turkistany, S.A., DeKoter, R.P. The Transcription Factor PU.1 is a Critical Regulator of Cellular Communication in the Immune System. Arch. Immunol. Ther. Exp. 59, 431–440 (2011). https://doi.org/10.1007/s00005-011-0147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-011-0147-9

Keywords

Navigation