Skip to main content
Log in

Blood coagulation and fibrinolysis in patients with Cushing’s syndrome: Increased plasminogen activator inhibitor-1, decreased tissue factor pathway inhibitor, and unchanged thrombin-activatable fibrinolysis inhibitor levels

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background and objectives: Cushing’s syndrome (CS) is associated with an increased cardiovascular mortality and morbidity. Chronic endogenous and exogenous hypercortisolism frequently induce a hypercoagulable and thrombotic condition. Little is known about hemostatic features of patients with CS. To our knowledge, plasma tissue factor pathway inhibitor (TFPI) and thrombin-activatable fibrinolysis inhibitor (TAFI) levels in these patients have not been investigated. Therefore, the main purpose of this study was to evaluate the markers of endogenous coagulation/fibrinolysis, including TFPI and TAFI, and to investigate the relationships between cortisol and these hemostatic parameters and serum lipid profile in patients with CS. Design and methods: Twenty-four patients with CS and 24 age-matched healthy controls were included in the study. Prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen, factors V, VII, VIII, IX, and X activities, von Willebrand factor (vWF), antithrombin III (AT III), protein C, protein S, tissue plasminogen activator (t-PA), tissue plasminogen activator inhibitor-1 (PAI-1), TFPI and TAFI, as well as common lipid variables, were measured. The relationships between serum cortisol and these hemostatic parameters were examined. Results: Compared with the control subjects, platelet count, PT, fibrinogen, AT-III and PAI-1 were significantly increased in patients with CS (p<0.05, p<0.0001, p<0.01, p<0.05, and p<0.0001, respectively), whereas aPTT and TFPI levels were significantly decreased (p<0.0001 and p<0.01, respectively). Plasma TAFI Ag levels did not significantly change in patients with CS compared with the controls. In patients with CS, we showed a negative correlation between serum cortisol: 08:00 h and aPTT (r:−0.469, p<0.05). Serum cortisol: 24:00 h was positively correlated with PAI-1 Ag levels (r: 0.479, p<0.05). Interpretation and conclusions: In conclusion, we found some important differences in the hemostatic parameters between the patients with CS and healthy controls. Increased platelet count, fibrinogen, PAI-1, and decreased TFPI levels in these patients represent a potential hypercoagulable and hypofibrinolytic state, which might augment the risk for atherosclerotic and atherothrombotic complications. This condition may contribute to the excess of mortality due to cardiovascular disease seen in patients with CS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Martin M, Pecori Giraldi F, Cavagnini F. Cushing’s disease. Pituitary 2006, 9: 279–87.

    Article  PubMed  Google Scholar 

  2. Mancini T, Kola B, Mantero F, Boscaro M, Arnaldi G. High cardiovascular risk in patients with Cushing’s syndrome according to 1999 WHO/ISH guidelines. Clin Endocrinol (Oxf) 2004, 61: 768–77.

    Article  Google Scholar 

  3. Etxabe J, Vazquez JA. Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin Endocrinol (Oxf) 1994, 40: 479–84.

    Article  CAS  Google Scholar 

  4. Baykan M, Erem C, Gedikli O, et al. Impairment of flow-mediated vasodilatation of brachial artery in patients with Cushing’s Syndrome. Endocrine 2007, 31: 300–4.

    Article  PubMed  CAS  Google Scholar 

  5. Dagenais GR, Yi Q, Mann JF, Bosch J, Pogue J, Yusuf S. Prognostic impact of body weight and abdominal obesity in women and men with cardiovascular disease. Am Heart J 2005, 149: 54–60.

    Article  PubMed  Google Scholar 

  6. Ambrosi B, Sartorio A, Pizzocaro A, Passini E, Bottasso B, Federici A. Evaluation of haemostatic and fibrinolytic markers in patients with Cushing’s syndrome and in patients with adrenal incidentaloma. Exp Clin Endocrinol Diabetes 2000, 108: 294–8.

    Article  PubMed  CAS  Google Scholar 

  7. Boscaro M, Sonino N, Scarda A, et al. Anticoagulant prophylaxis markedly reduces thromboembolic complications in Cushing’s syndrome. J Clin Endocrinol Metab 2002, 87: 3662–6.

    PubMed  CAS  Google Scholar 

  8. Fatti LM, Bottasso B, Invitti C, Coppola R, Cavagnini F, Mannucci PM. Markers of activation of coagulation and fibrinolysis in patients with Cushing’s syndrome. J Endocrinol Invest 2000, 23: 145–50.

    Article  PubMed  CAS  Google Scholar 

  9. Patrassi GM, Dal Bo Zanon R, Boscaro M, Martinelli S, Girolami A. Further studies on the hypercoagulable state of patients with Cushing’s syndrome. Thromb Haemost 1985, 54: 518–20.

    PubMed  CAS  Google Scholar 

  10. Shibli-Rahhal A, Van Beek M, Schlechte JA. Cushing’s syndrome. Clin Dermatol 2006, 24: 260–5.

    Article  PubMed  Google Scholar 

  11. Dal Bo Zanon R, Fornasiero L, Boscaro M, et al. Increased factor VIII associated activities in Cushing’s syndrome: a probable hypercoagulable state. Thromb Haemost 1982, 47: 116–7.

    Google Scholar 

  12. Dal Bo Zanon R, Fornasiero L, Boscaro M, et al. Clotting changes in Cushing’s syndrome: elevated factor VIII activity. Folia Haematol Int Mag Klin Morphol Blutforsch 1983, 110: 268–77.

    Google Scholar 

  13. La Brocca A, Terzolo M, Pia A, Paccotti P, De Giuli P, Angeli A. Recurrent thromboembolism as a hallmark of Cushing’s syndrome. J Endocrinol Invest 1997, 20: 211–4.

    Article  PubMed  Google Scholar 

  14. Sjöberg HE, Blombäck M, Granberg PO. Thromboembolic complications, heparin treatment in increase in coagulation factors in Cushing’s syndrome. Acta Med Scand 1976, 199: 95–8.

    Article  PubMed  Google Scholar 

  15. Yoshimura S, Ago T, Kitazono T, et al. Cerebral sinus thrombosis in a patient with Cushing’s syndrome. J Neurol Neurosurg Psychiatry 2005, 76: 1182–3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Jacoby RC, Owings JT, Ortega T, Gosselin R, Feldman EC. Biochemical basis for the hypercoagulable state seen in Cushing syndrome; discussion 1006-7. Arch Surg 2001, 136: 1003–6.

    Article  PubMed  CAS  Google Scholar 

  17. Small M, Lowe GD, Forbes CD, Thomson JA. Thromboembolic complications in Cushing’s syndrome. Clin Endocrinol 1983, 19: 503–11.

    Article  CAS  Google Scholar 

  18. Rooth E, Wallen H, Antovic A, et al. Thrombin activatable fibrinolysis inhibitor and its relationship to fibrinolysis and inflammation during the acute and convalescent phase of ischemic stroke. Blood Coagul Fibrinolysis 2007, 18: 365–70.

    Article  PubMed  CAS  Google Scholar 

  19. Redlitz A, Tan AK, Eaton DL, Plow EF. Plasma carboxypeptidases as regulators of the plasminogen system. J Clin Invest 1995, 96: 2534–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. van Tilburg NH, Rosendaal FR, Bertina RM. Thrombin activatable fibrinolysis inhibitor and the risk for deep vein thrombosis. Blood 2000, 95: 2855–9.

    PubMed  Google Scholar 

  21. Eichinger S, Schönauer V, Weltermann A, Minar E, Bialonczyk C, Hirschl M, Schneider B, Quehenberger P, Kyrle PA. Thrombin-activatable fibrinolysis inhibitor and the risk for recurrent venous thromboembolism. Blood 2004, 103: 3773–6.

    Article  PubMed  CAS  Google Scholar 

  22. Leebeek FW, Goor MP, Guimaraes AH, et al. High functional levels of thrombin-activatable fibrinolysis inhibitor are associated with an increased risk of first ischemic stroke. J Thromb Haemost 2005, 3: 2211–8.

    Article  PubMed  CAS  Google Scholar 

  23. Montaner J, Ribó M, Monasterio J, Molina CA, Alvarez-Sabín J. Thrombin-activable fibrinolysis inhibitor levels in the acute phase of ischemic stroke. Stroke 2003, 34: 1038–40.

    Article  PubMed  CAS  Google Scholar 

  24. Ravindranath TM, Goto M, Iqbal O, et al. Plasma thrombin activatable fibrinolysis inhibitor and tissue factor pathway inhibitor changes following sepsis. Clin Appl Thromb Hemost 2007, 13: 362–8.

    Article  PubMed  CAS  Google Scholar 

  25. Broze GJ Jr. The role of tissue factor pathway inhibitor in a revised coagulation cascade. Semin Hematol 1992, 29: 159–69.

    PubMed  CAS  Google Scholar 

  26. Abumiya T, Yamaguchi T, Terasaki T, Kokawa T, Kario K, Kato H. Decreased plasma tissue factor pathway inhibitor activity in ischemic stroke patients. Thromb Haemost 1995, 74: 1050–4.

    PubMed  CAS  Google Scholar 

  27. Kobayashi M, Wada H, Wakita Y, et al. Decreased plasma tissue factor pathway inhibitor levels in patients with thrombotic thrombocytopenic purpura. Thromb Haemost 1995, 73: 10–4.

    PubMed  CAS  Google Scholar 

  28. Harris GM, Stendt CL, Vollenhoven BJ, Gan TE, Tipping PG. Decreased plasma tissue factor pathway inhibitor in women taking combined oral contraceptives. Am J Hematol 1999, 60: 175–80.

    Article  PubMed  CAS  Google Scholar 

  29. Colao A, Pivonello R, Spiezia S, et al. Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab 1999, 84: 2664–72.

    PubMed  CAS  Google Scholar 

  30. Arnaldi G, Angeli A, Atkinson AB, et al. Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 2003, 88: 5593–602.

    Article  PubMed  CAS  Google Scholar 

  31. Luksenburg HS, Goldberg SL, Kessler CM. Hematologic Endocrinology. In: Becker KL ed. Principles and Practice of Endocrinology and Metabolism. Third Edition, Lippincott Williams and Wilkins, 2001, pp.1927–37.

  32. Girolami A, Simioni P, Scarano L, Girolami B. Venous and arterial thrombophilia. Haematologica 1997, 82: 96–100.

    PubMed  CAS  Google Scholar 

  33. Patrassi GM, Sartori MT, Viero ML, Scarano L, Boscaro M, Girolami A. The fibrinolytic potential in patients with Cushing’s disease: a clue to their hypercoagulable state. Blood Coagul Fibrinolysis 1992, 3: 789–93.

    Article  PubMed  CAS  Google Scholar 

  34. Meade TW, Mellows S, Brozovic M, etal. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 1986, 2: 533–7.

    Article  PubMed  CAS  Google Scholar 

  35. Feinbloom D, Bauer KA. Assessment of hemostatic risk factors in predicting arterial thrombotic events. Arterioscler Thromb Vasc Biol 2005, 25: 2043–53.

    Article  PubMed  CAS  Google Scholar 

  36. Quinsey NS, Greedy AL, Bottomley SP, Whisstock JC, Pike RN. Antithrombin: in control of coagulation. Int J Biochem Cell Biol 2004, 36: 386–9.

    Article  PubMed  CAS  Google Scholar 

  37. Roemisch J, Gray E, Hoffmann JN, Wiedermann CJ. Antithrombin: a new look at the actions of a serine protease inhibitor. Blood Coagul Fibrinolysis 2002, 13: 657–70.

    Article  PubMed  CAS  Google Scholar 

  38. Bayston TA, Lane DA. Antithrombin: molecular basis of deficiency. Thromb Haemost 1997, 78: 339–43.

    PubMed  CAS  Google Scholar 

  39. Feldman BF, Rasedee A, Feldman EC. Haemostatic abnormalities in canine Cushing’s syndrome. Res Vet Sci 1986, 41: 228–30.

    PubMed  CAS  Google Scholar 

  40. Moss AJ, Goldstein RE, Marder VJ, et al. Thrombogenic factors and recurrent coronary events. Circulation 1999, 99: 2517–22.

    Article  PubMed  CAS  Google Scholar 

  41. Lwaleed BA, Bass PS. Tissue factor pathway inhibitor: structure, biology and involvement in disease. J Pathol 2006, 208: 327–39.

    Article  PubMed  CAS  Google Scholar 

  42. Hoke M, Kyrle PA, Minar E, et al. Tissue factor pathway inhibitor and the risk of recurrent venous thromboembolism. Thromb Haemost 2005, 94: 787–90.

    PubMed  Google Scholar 

  43. Monasterio J, Bermúdez P, Quiroga D, Francisco E, Meneses B, Montaner J. Plasma thrombin-activatable fibrinolytic inhibitor (TAFI) among healthy subjects and patients with vascular diseases: a validation study. Pathophysiol Haemost Thromb 2003–2004, 33: 382–6.

    Article  CAS  Google Scholar 

  44. Bajzar L, Manuel R, Nesheim ME. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem 1995, 270: 14477–84.

    Article  PubMed  CAS  Google Scholar 

  45. Van Tilburg NH, Rosendaal FR, Bertina RM. Thrombin activatable fibrinolysis inhibitor and the risk for deep vein thrombosis. Blood 2000, 95: 2855–9.

    PubMed  Google Scholar 

  46. Juhan-Vague I, Morange PE, Aubert H, et al; HIFMECH Study Group. Plasma thrombin-activatable fibrinolysis inhibitor antigen concentration and genotype in relation to myocardial infarction in the north and south of Europe. Arterioscler Thromb Vasc Biol 2002, 22: 867–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Erem MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erem, C., Nuhoglu, I., Yilmaz, M. et al. Blood coagulation and fibrinolysis in patients with Cushing’s syndrome: Increased plasminogen activator inhibitor-1, decreased tissue factor pathway inhibitor, and unchanged thrombin-activatable fibrinolysis inhibitor levels. J Endocrinol Invest 32, 169–174 (2009). https://doi.org/10.1007/BF03345709

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345709

Key-words

Navigation