Skip to main content
Log in

Enhanced production of a novel dextran fromLeuconostoc mesenteroides NRRL B-640 by Response Surface Methodology

  • Food Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

In our earlier study dextran produced byLeuconostoc mesenteroides NRRL B-640 was reported to possess novel food gelling and thickening properties (Puramaet al., 2009). In the present study response surface methodology based experimental designs were applied to enhance the production of this novel dextran byLeuconostoc mesenteroides NRRL B-640. Eleven medium components were examined for their significance on dextran production using Plackett-Burman factorial design. Sucrose, peptone and beef extract were found to have significant effect on the dextran production. The combined effect of these nutrients on dextran production were studied using a 23 full-factorial central composite design, a second-order polynomial was established to identify the relationship between the output i.e. dextran produced and the three medium components. The optimal concentration of variables for maximum dextran production were 5%, w/v sucrose, 2.5%, w/v peptone, and 2.5%, w/v beef extract. The maximum concentration of dextran obtained by predicted model was 12.0 mg/ml that was in perfect agreement with the experimental determined value (12.2±0.2 mg/ml). This value of dextran concentration was over 70 percent higher as compared to un-optimized medium that gave 7.0±0.2 mg/ ml of dextran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alsop R.M. (1983). Industrial production of dextrans. In: Bushell M.E., Ed., Progress in Industrial Microbiology, Vol. 18, Elsevier, New York, pp. 1–42.

    Google Scholar 

  • Barker P.E., Gantesos G., Ajongwen J. (1993). A novel approach to the production of clinical-grade dextran. J. Chem. Technol. Biotechnol., 57: 21–26.

    Article  CAS  PubMed  Google Scholar 

  • Behravan J., Bazzaz B.S.F., Salimi Z. (2003). Optimization of dextran production byLeuconostoc mesenteroides NRRL B-512F using cheap and local sources of carbohydratre and nitrogen. Biotechnol. Appl. Biochem., 38: 267–269.

    Article  CAS  PubMed  Google Scholar 

  • Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350–356.

    Article  CAS  Google Scholar 

  • Fox J.D., Robyt J.F. (1991). Miniaturization of three carbohydrate analyses using a microsample plate reader. Anal. Biochem., 19: 593–596.

    Google Scholar 

  • Goyal A., Katiyar S.S. (1996). Regulation of dextransucrase productivityfrom Leuconostoc mesenteroides NRRL B-512F by the maintenance media. J. Gen. Appl. Microbiol., 42: 81–85.

    Article  CAS  Google Scholar 

  • Goyal A., Katiyar, S.S. (1997). Effect of certain nutrients on the production of dextransucrase fromLeuconostoc mesenteroides NRRL B-512F. J. Basic Microbiol., 37: 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Haider M.A., Pakshirajan K. (2007). Screening and optimization of media constituents for enhancing lipolytic activity by a soil microorganism using statistically designed experiments. Appl. Biochem. Biotechnol., 141: 377–390.

    Article  CAS  PubMed  Google Scholar 

  • Jeanes A., (1965). Preparation of dextrans from growingLeuconostoc cultures. Methods Carbohydr. Chem., 5: 18–126.

    Google Scholar 

  • Karthikeyan R.S., Rakshit S.K., Baradarajan A. (1996). Optimization of batch fermentation conditions for dextran production. Bioproc. Eng., 15: 247–251.

    Article  CAS  Google Scholar 

  • Kralj S., Van Geel-Schutten G.H., Dondroff M.G., Kirsanovs S., Van Der Maarel M.J.E.C., Dijkhuizen L. (2004). Glucan synthesis in the genusLactobacillus: isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiology, 150: 3681–3690.

    Article  CAS  PubMed  Google Scholar 

  • Lawford G.R., Kligerman A., Williams T., Lawford H.G. (1979). Deaxtran biosynthesis and dextransucrase production by continuous culture ofLeuconostoc mesenteroides. Biotechnol. Bioeng., 21: 1121–1131.

    Article  CAS  PubMed  Google Scholar 

  • Lazic M.L., Velzkovic V.B., Vucetic J.I., Vrvic M.M., (1993). Effect of pH and aeration on dextran production byLeuconostoc mesenteroides. Enzyme Microb. Technol., 15: 334–338.

    Article  CAS  Google Scholar 

  • Leathers T.D. (2002). Dextran: polysaccharides from prokaryotes. In: Vandamme E.J., De Baets S., Steinbüchel A., Eds, Biopolymers, Polysaccharides?, Wiley-VCH, Weinheim, pp. 299–321.

    Google Scholar 

  • Li J., Ma C., Ma Y., Li Y. (2007). Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production. Appl. Microbiol. Biotechnol., 74: 563–571.

    Article  CAS  PubMed  Google Scholar 

  • Liu G.-C., Wang X.-L. (2007). Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production byAgaricus blazei. Appl. Microbiol. Biotechnol., 74: 78–83.

    Article  CAS  PubMed  Google Scholar 

  • Majumder A., Goyal A. (2008). Enhanced production of exocellular glucansucrase fromLeuconostoc dextranicum NRRL B-1146 using response surface method. Bioresour. Technol., 99: 3685–3691.

    Article  CAS  PubMed  Google Scholar 

  • Majumder A., Goyal A. (2009) Rheological and gelling properties of a novel glucan fromLeuconostoc dextranicum NRRL B-1146. Food Res. Int., 42: 525–528.

    Article  CAS  Google Scholar 

  • Majumder A., Singh A., Goyal A. (2009). Application of response surface methodology for glucan production fromLeuconostoc dextranicum and its structural characterization. Carbohydr. Polym., 75: 150–156.

    Article  CAS  Google Scholar 

  • Naessens M., Cerdobbel A., Soetaert W., Vandamme E.J. (2005).Leuconostoc dextransucrase and dextran: production, properties and applications. J. Chem. Technol. Biotechnol., 80: 845–860.

    Article  CAS  Google Scholar 

  • Plackett R.L., Burman J.P. (1946). The design of optimum multifactorial experiments. Biometrika, 33: 305–325.

    Article  Google Scholar 

  • Purama R.K., Goyal A. (2005). Dextransucrase production byLeuconostoc mesenteroides. Ind. J. Microbiol., 2: 89–101.

    Google Scholar 

  • Purama R.K., Goyal A. 2008. Screening and optimization of nutritional factors for higher dextransucrase production byLeuconostoc mesenteroides NRRL B-640 using statistical approach. Bioresour. Technol., 99: 7108–7114.

    Article  CAS  PubMed  Google Scholar 

  • Purama R.K., Singh G., Majumder A., Dasu V.V., Goyal A. (2007). Dextransucrase production fromLeuconostoc mesenteroides NRRL B-640 in batch fermentation. Int. J. Chem. Sci., 5: 1497–1504.

    CAS  Google Scholar 

  • Purama R.K., Singh G., Majumder A., Dasu V.V., Goyal A. (2008). Dextransucrase production byLeuconostoc mesenteroides NRRL B-640 in bioreactor: effect of aeration and mathematical modelling. J. Appl. Biosci. Biotechnol., 4: 9–14.

    Google Scholar 

  • Purama R.K., Goswami P., Khan A.T., Goyal A. (2009). Structural analysis and properties of dextran produced byLeuconostoc mesenteroides NRRL B-640. Carbohydr. Polym., 76, 30–35.

    Article  CAS  Google Scholar 

  • Rodrigues S., Lona L.M.F., Franco T.T. (2003). Effect of phosphate concentration on the production of dextransucrase byLeuconostoc mesenteroides B-512F. Bioproc. Biosyst. Eng., 26: 57–62.

    Article  CAS  Google Scholar 

  • Tsuchiya H.M., Koepsell H.J., Corman J., Bryant G., Bogard M.O., Feger V.H., Jackson R.W. (1952). The effect of certain cultural factors on production of dextransucrase byLeuconostoc mesenteroides. J. Bacteriol., 64: 521–527.

    CAS  PubMed  Google Scholar 

  • Seymour F.R., Knapp R.D. (1980). Structural analysis of dextrans from strains ofLeuconostoc and related genera that contain 3-O-a-glucosylated-D-glucopyranosyl residues at the branched points, or in consecutive, linear position. Carbohydr. Res., 81: 105–129.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Avishek Majumder or Arun Goyal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumder, A., Bhandari, S., Purama, R.K. et al. Enhanced production of a novel dextran fromLeuconostoc mesenteroides NRRL B-640 by Response Surface Methodology. Ann. Microbiol. 59, 309–315 (2009). https://doi.org/10.1007/BF03178333

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178333

Key words

Navigation