Skip to main content
Log in

l-Aspartate fermentation by a free-livingCampylobacter species

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In the fermentation ofl-aspartate by a free-livingCampylobacter spec., the products formed were acetate, succinate, carbon dioxide and ammonia. The oxidative part of the fermentation pathway yielded acetate, succinate, carbon dioxide and ammonia, and the reductive part gave rise to the formation of succinate and ammonia. When grown anaerobically with aspartate, cells contained cytochromesb andc as well as menaquinone. Reduced cytochromeb, but not reduced cytochromec could be reoxidized by fumarate. In the presence of nitrate, 90% of the available electrons were transferred to nitrate, which was reduced to nitrite; the remainder was transported via the fumarate reductase system. Cells grown with aspartate and excess of formate converted aspartate quantitatively to succinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TLC:

thin layer chromatography

References

  • Bergmeyer, H. U., Bernt, E., Pfleiderer, G.:l-Aspartat undl-Asparagin. Bestimmung mit Glutamat-Oxalacetat-Transaminase und Malat-Dehydrogenase. In: Methoden der enzymatischen Analyse (H. U. Bergmeyer, ed.) 2nd ed., pp. 1651–1654. Weinheim. Verlag Chemie 1970

    Google Scholar 

  • Cook, R. A., Sanwal, B. D.: Isocitrate dehydrogenase fromNeurospora crassa. In: Methods in enzymology, Vol. XIII. Citric acid cycle. (J. M. Lowenstein, ed.), pp. 42–43. New York-London: Academic Press 1969

    Google Scholar 

  • Crane, F. L., Barr, R.: Determination of ubiquinones. In: Methods in enzymology, Vol. XVII (D. B. McCormick, L. D. Wright, eds.), pp. 137–164. New York-London Academic Press 1971

    Google Scholar 

  • Dawes, C. A., McGill, D. J., Midgley, M.: Analysis of fermentation products. In: Methods in microbiology, Vol. 6A (J. R. Norris, D. W. Ribbons, eds.), pp. 53–215. London-New York: Academic Press 1971

    Google Scholar 

  • Dixon, G. H., Kornberg, H. L.: Assay methods for key enzymes of the glyoxylate cycle. Biochem. J.72, 3P (1959)

  • Harris, M. A., Reddy, C. A.: Hydrogenase activity and the H2-fumarate electron-transport system inBacteroides fragilis. J. Bacteriol.131, 922–928 (1977)

    Google Scholar 

  • Hill, R. L., Bradshaw, R. A.: Fumarase. In: Methods in enzymology, Vol. XIII. Citric acid cycle (J. M. Lowenstein ed.), pp. 91–99. New York-London: Academic Press 1969

    Google Scholar 

  • Hsu, R. Y., Lardy, H. A.: Malic enzyme. In: Methods in enzymology, Vol. XIII. Citric acid cycle (J. M. Lowenstein, ed.), pp. 230–231. New York-London: Academic Press 1969

    Google Scholar 

  • Jacobs, N. J., Wolin, M. J.: Electron-transport system ofVibrio succinogenes. I. Enzymes and cytochromes of the electron-transport system. Biochim. Biophys. Acta69, 18–28 (1963a)

    Google Scholar 

  • Jacobs, N. J., Wolin, M. J.: Electron-transport system ofVibrio succinogenes. II. Inhibition of electron-transport by 2-heptyl-4-hydroxyquinoline N-oxide. Biochim. Biophys. Acta69, 29–39 (1963b)

    Google Scholar 

  • Kröger, A., Schimkat, M., Niedermaier, S.: Electron-transport phosphorylation to fumarate reduction in anaerobically grownProteus rettgeri. Biochim. Biophys. Acta347, 273–289 (1974)

    Google Scholar 

  • Kröger, A., Innerhofer, A.: The function of menaquinone, covalently bound FAD and iron-sulfur protein in the electron transport from formate to fumarate ofVibrio succinogenes. Eur. J. Biochem.69, 487–495 (1976a)

    Google Scholar 

  • Kröger, A., Innerhofer, A.: The function of the b cytochromes in the electron transport from formate to fumarate ofVibrio succinogenes. Eur. J. Biochem.69, 497–506 (1976b)

    Google Scholar 

  • Laanbroek, H. J., Kingma, W., Veldkamp, H.: Isolation of an aspartate-fermenting, free-livingCampylobacter species. FEMS Letters1, 99–102 (1977)

    Google Scholar 

  • Lang, E., Lang, H.: Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Z. Anal. Chem.260, 8–10 (1972)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randell, R. J.: Protein measurements with Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951)

    Google Scholar 

  • Miller, J. D. A., Wakerley, D. S.: Growth of sulfate-reducing bacteria by fumarate dismutation. J. Gen. Microbiol.43, 101–107 (1966)

    Google Scholar 

  • Nawiasky, P.: Über die Umsetzung von Aminosäuren durchBac. proteus vulgaris. Arch. Hyg.66, 208–243 (1908)

    Google Scholar 

  • Newton, N. A., Cox, G. B., Gibson, F.: The function of menaquinone (vitamin K2) inEscherichia coli, K-12. Biochim. Biophys. Acta244, 155–166 (1971)

    Google Scholar 

  • Niekus, H. G. D., de Vries, W., Stouthamer, A. H.: The effect of different dissolved oxygen tensions on growth and enzyme activities ofCampylobacter sputorum subspecies,bubulus. J. Gen. Microbiol.103, 215–222 (1977)

    Google Scholar 

  • Peck, H. D., Jr., Smith, O. H., Gest, H.: Comparative biochemistry of the biological reduction of fumaric acid. Biochim. Biophys. Acta25, 142–147 (1957)

    Google Scholar 

  • Reed, L. J., Mukherjee, B. B.: α-Ketoglutarate dehydrogenase complex fromEscherichia coli. In: Methods in enzymology, Vol. XIII. Citric acid cycle (J. M. Lowenstein, ed.), pp. 55–61. New York-London: Academic Press 1969

    Google Scholar 

  • Van 't Riet, J., Stouthamer, A. H., Planta, R. J.: Regulation of nitrate assimilation and nitrate respiration inAerobacter aerogenes. J. Bacteriol.96, 1455–1464 (1968)

    Google Scholar 

  • Vishniac, W., Santer, M.: The thiobacilli. Bacteriol. Rev.21, 195–213 (1957)

    Google Scholar 

  • Williams, V. R., Lartigue, D. J.: Aspartase. In: Methods in enzymology, Vol. XIII. Citric acid cycle (J. M. Lowenstein, ed.), pp. 354–362. New York-London: Academic Press 1969

    Google Scholar 

  • Wolf, J.: Ketosäuren, Bildung von substituiertem Phenylhydrazone bzw. von substituiertem Chinoxal in Derivaten. In: Modern methods in plant analysis, Vol. II (K. Paech, M. C. Tracey, eds.), Berlin-Göttingen-Heidelberg: Springer 1955

    Google Scholar 

  • Wong, J. C., Dyer, J. K., Tribble, J. L.: Fermentation ofl-aspartate by a saccharolytic strain ofBacteroides melaninogenicus. Appl. & Environm. Microbiol.33, 69–73 (1977)

    Google Scholar 

  • Yoshida, A.:l-Malate dehydrogenase fromBacillus subtilis. In: Methods in enzymology, Vol. XIII. Citric acid cycle (J M. Lowenstein, ed.), pp. 141–142. New York-London: Academic Press 1969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laanbroek, H.J., Lambers, J.T., De Vos, W.M. et al. l-Aspartate fermentation by a free-livingCampylobacter species. Arch. Microbiol. 117, 109–114 (1978). https://doi.org/10.1007/BF00689359

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689359

Key words

Navigation