Skip to main content
Log in

Photoreceptor optics of the honeybee and its eye colour mutants: the effect of screening pigments on the long-wave subsystem of colour vision

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

With the aim of clarifying the role of screening pigments in photoreceptor optics of the compound eye, a comparative study of the optical properties of the honeybee eye in the visible region of the spectrum was carried out using wild-type bees and eye colour mutantssnow, snow laranja, ivoryumberandchartreuse with total or partial blockage of the tryptophane-ommochrome pathway.

  1. 1.

    The electroretinogram (ERG) of mutant eyes displayed a sharp on-peak, this component being absent from normal heterozygote eyes (Fig. 6).

  2. 2.

    The ERG of newly emerged bees (a) lacked the above on-peak and showed oscillations in mutants, and (b) lacked the off-peak which always occurs in the ERG of adults in all the genotypes studied when stimulated by visible light.

  3. 3.

    The resting potentials of the receptor and cone cells were not found to be affected by mutations la, and the receptor potential ins/s ands la/slaphotoreceptors appeared to be similar to that in +/+

  4. 4.

    Analysis of the amplitude characteristics of the whole eye of eight genotypes showed that the relative numbers of photons absorbed from an extended light source (4.5°×16.5°) and needed to elicit a standard ERG amplitude of 1 mV were as follows:s/s∶i u/iu∶sla/sla∶ch1/ch1∶(+/+; s/+ iu/+; sla/+)=1∶4.3∶8.6∶12.2∶(100–250). These ratios are believed to reflect the progress in ommochrome formation in these strains.

  5. 5.

    Spectral sensitivity curves (SSC) were obtained using an automatic spectrosensitometer and a spectral scan method which gave accurate results. The SSC of the whole eye in+/+ peaked at aλ max of 543±7 nm (SD,n=6), whereasλ max ins/s ands la/slashifted to 528±6 nm (n=9) and 548 ±3nm (n=6) respectively. The SSC ins/+ was the same as that in+/+. The bandwidth (width at 50% of peak sensitivity) of the SSC proved to be similar in+/+ ands/+ (126±10 nm and 128±8 nm), although ins/s the SSC appeared to be significantly narrower (106±7 nm;P<0.01; Fig. 8, Table 2).

  6. 6.

    The peak spectral sensitivity of long-wave (LW) receptors lay at 541±5 nm (SD,n=14) in+/+ and at 526±5 nm (n=13) ins/s; the spectral distributions of the peaks in these genotypes were different. The bandwidth of the SSCs of the photoreceptors were 109±11 nm in+/+ and 103±4 nm ins/s, the difference being insignificant (Fig. 8, Table 2). The SSCs ins/s fit the absorption spectrum of pigment 526 (P 526) rather well whereas those in+/+ are noticeably distorted. The same is true for the whole-eye data.

  7. 7.

    A theory is advanced to account for the acceptance functions of the photoreceptors of eyes with imperfect pigmentation. Light scattering in imperfectly screened eyes was estimated using a factor which the termed we parasitic absorption coefficientp (see Theory).

  8. 8.

    The acceptance functions of LW photoreceptors were measured by three methods, and the results were similar to those predicted from the theory. On this basis the coefficientp was estimated; fors/s photoreceptors it lay between 0.65 and 0.76 according to experiments with a point light source (method 1), and was as great as 2.5 according to measurements with an extended light source (method 2). The latter technique, an integral method, made it possible to detect light scattering in normal bee eye, the coefficientp reaching 0.02 (Fig. 1, Table 3).

  9. 9.

    In genotypes+/+ ands la/slathe absorption spectra of screening pigments were recorded by microspectrophotometry (MSP), and greater transmission of red light than blue-green was found (Fig. 11).

  10. 10.

    Taking into account the screening effect of ommochromes, it is suggested that the visual pigment of LW photoreceptors in the honeybee eye is P 526; the absorption spectrum of this is highly similar to the SSC of LW photoreceptors in thes/s eye.

  11. 11.

    On the basis of our theory and experimental results, the contrast transfer function (CTF) for the white honeybee eye was estimated to be only 0.1 (for white and black patterns with the spatial wavelengthλ spΔρ, the acceptance angle). Thus, the absence of screening pigments from the compound eye ofsnow mutants causes the great decrease in image contrast, and this serious sensory defect may be responsible for the fact that these mutants fail to find their way home.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ERG :

electroretinogram

SSC :

spectral sensitivity curve

LW :

long wave

MSP :

microspectrophotometry

CTF :

contrast transfer function

References

  • Autrum H (1950) Die Belichtungspotentiale und das Sehen der Insekten (Untersuchungen anCalliphora und Dixippus). Z Vergl Physiol 32:176–227

    Google Scholar 

  • Autrum H (1955) Die spektrale Empfindlichkeit der Augenmutante white-apricot vonCalliphora erythrocephala. Biol Zbl 74:515–524

    Google Scholar 

  • Autrum H (1961) Die Sehschärfe pigmentfreier Facettenaugen vonCalliphora erythrocephala. Biol Zbl 80:1–4

    Google Scholar 

  • Autrum H, Gallwitz U (1951) Zur Analyse der Belichtungspotentiale des Insektauges. Z Vergl Physiol 33:407–435

    Google Scholar 

  • Autrum H, Hoffmann C (1957) Die Wirkung von Pikrotoxin und Nikotin auf das Retinogramm von Insekten. Z Naturforsch 12b:752–757

    Google Scholar 

  • Autrum H, Kolb G (1968) Spektrale Empfindlichkeit einzelner Sehzellen der Aeschniden. Z Vergl Physiol 60:450–477

    Google Scholar 

  • Autrum H, Zwehl V von (1964) Spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z Vergl Physiol 48:357–384

    Google Scholar 

  • Bennett RR, Brown PK (1985) Properties of the visual pigments of the mothManduca sexta and the effects of two detergents, digitonin and CHAPS. Vision Res 25:1771–1781

    Google Scholar 

  • Bruno MS, Barnes SN, Goldsmith TH (1977) The visual pigment and visual cycle of the lobster,Homarus. J Comp Physiol 120:123–142

    Google Scholar 

  • Burnett B, Connoly K, Beck J (1968) Phenogenetic studies on visual acuity inDrosophila melanogaster. J Insect Physiol 14:855–860

    Google Scholar 

  • Chesnokova YeG, Polyanovsky AD, Gribakin FG (1981) The effect of mutationssnow andlaranja on morphological properties of the compound eye in the honeybee. Dokl Akad Nauk SSSR 256:1503–1506

    Google Scholar 

  • Cronin TW (1985) The visual pigment of a stomatopod crustacean,Squilla empusa. J Comp Physiol A 156:679–687

    Google Scholar 

  • Dustmann JH (1969) Eine chemische Analyse der Augenfarbmutanten vonApis mellifera. J Insect Physiol 15:2225–2238

    Google Scholar 

  • Ebrey TG, Honig B (1977) New wavelength dependent visual pigment nomograms. Vision Res 17:147–151

    Google Scholar 

  • Eheim WP, Wehner R (1971) Die Sehfelder der zentralen Ommatidien in den Appositionsaugen vonApis mellifica undCataglyphis bicolor (Apidae, Formicidae, Hymenoptera). Kybernetik 10:168–179

    Google Scholar 

  • Goldsmith TH (1958) The visual system of the honeybee. Proc Natl Acad Sci USA 44:123–126

    Google Scholar 

  • Goldsmith TH (1965) Do flies have a red receptor? J Gen Physiol 49:265–287

    Google Scholar 

  • Goldsmith TH (1978) The effects of screening pigments on the spectral sensitivity of some Crustacea with scotopic (superposition) eyes. Vision Res 18:475–482

    Google Scholar 

  • Götz KG (1964) Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der FruchtfliegeDrosophila. Kybernetik 2:77–92

    Google Scholar 

  • Gribakin FG (1979) A study of spectral and polarization sensitivities of single photoreceptors in the beetleLethrus by automatic substitution colorimeter. Dokl Akad Nauk SSSR 245:495–499

    Google Scholar 

  • Gribakin FG (1981a) Automatic spectrosensitometry of photoreceptors inLethrus (Coleoptera, Scarabaeidiae). J Comp Physiol 142:95–102

    Google Scholar 

  • Gribakin FG (1981b) Mechanisms of photoreception in insects. Nauka, Leningrad

    Google Scholar 

  • Gribakin FG, Chesnokova YeG (1982) Changes in functional properties of compound eye in the honeybee due to mutations disturbing tryptophane exchange. Neirofiziologiya 14:69–75

    Google Scholar 

  • Gribakin FG, Burovina IV, Chesnokova YeG, Natochin YuV, Sakhmatova YeI, Ukhanov KYu, Voyke E (1987) Reduced magnesium content in non-pigmented eye of the honeybee (Apis mellifera L.). Comp Biochem Physiol 86A:689–692

    Google Scholar 

  • Hamdorf K, Schwemer J (1975) Photoregeneration and the adaptation process in insect photoreceptors. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 263–289

    Google Scholar 

  • Hardie RC (1985) Functional organization of the fly retina. In: Ottoson D (ed) Progress in sensory physiology. Springer, Berlin Heidelberg New York, vol 5, pp 1–79

    Google Scholar 

  • Hays D, Goldsmith TH (1969) Microspectrophotometry of the visual pigment of the spider crab,Libinia emarginata. Z Vergl Physiol 65:218–232

    Google Scholar 

  • Heisenberg M (1971) Separation of receptor and lamina potentials in the electroretinogram of normal and mutantDrosophila. J Exp Biol 55:85–100

    Google Scholar 

  • Helversen O von (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–472

    Google Scholar 

  • Hengstenberg R, Götz KG (1967) Der Einfluss des Schirmpigmentgehalts auf die Helligkeits- und Kontrastwahrnehmung beiDrosophila Augenmutanten. Kybernetik 3:276–285

    Google Scholar 

  • Höglund G, Hamdorf K, Rosner G (1973) Trichromatic visual system in an insect and its sensitivity control by blue light. J Comp Physiol 86:215–229

    Google Scholar 

  • Horridge GA, Marčelja L, Jahnke R, Matič T (1983) Single electrode studies on the retina of the butterflyPapilio. JComp Physiol 150:271–294

    Google Scholar 

  • Kaiser W (1974) The spectral sensitivity of the honeybee optomotor walking response. J Comp Physiol 90:405–408

    Google Scholar 

  • Kaiser W, Liske E (1974) Die optomotorische Reaktionen von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern. J Comp Physiol 89:391–408

    Google Scholar 

  • Kalmus H (1943) The optomotor responses of some eye mutants inDrosophila. J Genetics 45:206–213

    Google Scholar 

  • Kalmus H (1961) The attenuation of optomotor responses in white-eyed mutants ofMusca domestica andCoelopa frigida. Vision Res 1:192–197

    Google Scholar 

  • Kolb G, Autrum H (1972) Die Feinstruktur im Auge der Biene bei Hell- und Dunkel-Adaptation. J Comp Physiol 77:126–140

    Google Scholar 

  • Kong K-L, Goldsmith TH (1977) Photochemistry of retinular cells in white-eyed crayfish (Procambarus clarkii). J Comp Physiol 122:273–288

    Google Scholar 

  • Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee's compound eye: polarizational and angular sensitivity. J Comp Physiol 141:19–30

    Google Scholar 

  • Langer H (1975) Properties and functions of screening pigments in insect eyes. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 429–455

    Google Scholar 

  • Langer H, Hoffmann C (1966) Elektro- und stoffwechselphysiologische Untersuchungen über den Einfluss von Ommochromen und Pteridinen auf die Funktion des Facettenauges vonCalliphora erythrocephala. J Insect Physiol 12:357–387

    Google Scholar 

  • Langer H, Hamann B, Meinecke CC (1979) Tetrachromatic visual system in the mothSpodoptera exempta (Insecta, Noctuidae). J Comp Physiol 129:235–239

    Google Scholar 

  • Langer H, Schlecht P, Schwemer J (1982) Microspectrophotometric investigation of insect visual pigments. In: Packer L (ed) Methods in enzymology, Biomembranes, vol 81, part H. Academic, New York, pp 729–741

    Google Scholar 

  • Laughlin SB, Horridge GA (1971) Angular sensitivity of the retinula cells of dark-adapted worker bee. Z Vergl Physiol 74:329–335

    Google Scholar 

  • Lopatina NG, Marshin VG, Nikitina IA, Ponomarenko VV, Smirnova GP, Savvateeva YeG, Chesnokova YeG (1976) The effect of several mutations on behavioural and neurological features of insects. Zh Vysshei Nervnoi Deyatel'nosti 26:785–792

    Google Scholar 

  • Maximov VV (1988) An approximation of visual absorption spectra. Sensornye Systemy 2:3–8

    Google Scholar 

  • Mazokhin-Porshnyakov GA (1969) Insect vision. Plenum, New York

    Google Scholar 

  • Menzel R, Blakers M (1976) Colour receptors in the bee eye — morphology and spectral sensitivity. J Comp Physiol 108:11–33

    Google Scholar 

  • Menzel R, Ventura DP, Hertel H, Souza JM de, Greggers U (1986) Spectral sensitivity of photoreceptors in insect compound eyes: comparison of species and methods. J Comp Physiol A 158:165–177

    Google Scholar 

  • Neese V (1968) Zur optischen Orientierung der Augenmutante ‘Chartreuse’ vonApis mellifica L. Z Vergl Physiol 60:41–62

    Google Scholar 

  • Rothenbuchler WC (1975) The honeybee —Apis mellifera. In: King RC (ed) Handbook of genetics, vol 3. Plenum, New York, pp 165–172

    Google Scholar 

  • Schlecht P (1979) Colour discrimination in dim light: an analysis of the photoreceptor arrangement in the mothDeilephila. J Comp Physiol 129:257–267

    Google Scholar 

  • Schwemer J, Langer H (1982) Insect visual pigments. In: Packer L (ed) Methods in enyzmology, Biomembranes, vol 81, part H. Academic, New York, pp 182–190

    Google Scholar 

  • Schwemer J, Paulsen R (1973) Three visual pigments inDeilephila elpenor (Lepidoptera, Sphingidae). J Comp Physiol 86:215–229

    Google Scholar 

  • Shukolukov SA, Gribakin FG, Chesnokova YeG (1987) A photosensitive water-soluble ommochrome protein from honeybee eye: spectral mimic of the visual pigment. Sensornye Systemy 1:238–246

    Google Scholar 

  • Smakman JGJ, Hateren JH van, Stavenga DG (1984) Angular sensitivity of blowfly photoreceptors: intracellular measurements and wave-optical predictions. J Comp Physiol A 155:239–247

    Google Scholar 

  • Snyder AW (1979) The physics of vision in compound eyes. In: Autrum H (ed) Handbook of sensory physiology: comparative physiology and evolution of vision in invertebrates, vol VII/6A. Springer, Berlin Heidelberg New York, pp 227–313

    Google Scholar 

  • Snyder AW, Pask C (1973) Spectral sensitivity of dipteran retinula cells. J Comp Physiol 84:59–76

    Google Scholar 

  • Snyder AW, Menzel R, Laughlin SB (1973) Structure and function of the fused rhabdom. J Comp Physiol 87:99–135

    Google Scholar 

  • Stark WS (1973) The effect of eye colour pigments on the action spectrum ofDrosophila. J Insect Physiol 19:999–1006

    Google Scholar 

  • Streck P (1972) Der Einfluss des Schirmpigmentes auf das Sehfeld einzelner Sehzellen der FliegeCalliphora erythrocephala Meig. Z Vergl Physiol 76:372–402

    Google Scholar 

  • Thomas I, Autrum H (1965) Die Empfindlichkeit der dunkel- und hell-adaptieren Biene (Apis mellifica) für spektrale Farben: zum Purkinje-Phänomen der Insekten. Z Vergl Physiol 51:204–218

    Google Scholar 

  • Tilson RL, Yundson CL, Strong FE (1972) Electrophysiological responses in mutant-eyed drones ofApis mellifera to selected wavelengths of light. J Insect Physiol 18:2441–2447

    Google Scholar 

  • Waterman TH, Fernandez HR (1970) E-vector and wavelength discrimination by retinular cells of the crayfishProcambarus. Z Vergl Physiol 68:154–174

    Google Scholar 

  • Wehner R, Gartenman G, Jungi T (1969) Contrast perception in eye colour mutants ofDrosophila melanogaster andDrosophila subobscura. J Insect Physiol 15:815–823

    Google Scholar 

  • White RH, Brown PK, Hurley AK, Bennett RR (1983) Rhodopsins, retinular cell ultrastructure, and receptor potentials in the developing pupal eye of the mothManduca sexta. J Comp Physiol 150:153–163

    Google Scholar 

  • Woyke E (1973)Laranja: a new honeybee mutation. J Hered 64:227–230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor H. Autrum on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gribakin, F.G. Photoreceptor optics of the honeybee and its eye colour mutants: the effect of screening pigments on the long-wave subsystem of colour vision. J. Comp. Physiol. 164, 123–140 (1988). https://doi.org/10.1007/BF00612726

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612726

Keywords

Navigation