Skip to main content
Log in

Isolation and nucleotide sequence of the 5-aminolevulinate synthase gene from Aspergillus nidulans

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The structural gene for 5-aminolevulinate (ALA) synthase has been cloned and sequenced from the filamentous fungus Aspergillus nidulans using an oligonucleotide probe based on a highly conserved-amino-acid sequence found in ALA synthase genes of a wide range of species. The cloned gene, hemA, has a 5′ untranslated mRNA of 92 nucleotides (nt) and one intron (64 nt). The deduced protein sequence (648 amino acids) shows 64% identity to the yeast ALA synthase in the C-terminal region of 453 amino acids. The N-terminal region is typical of ALA synthase proteins in that the specific amino-acid sequence is not conserved but consists of a “leader” region rich in basic amino acids, believed to be involved in mitochondrial targeting, followed by a stretch of largely hydrophobic residues which may allow interaction with the inner mitochondrial membrane. Under the conditions used the transcription of hemA was unaffected by dextrose repression, heat shock, or oxygen levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballance DJ (1986) Yeast 2:229–236

    Google Scholar 

  • Belazzi T, Wagner A, Wieser R, Schanz MK, Adam G, Hartig A, Ruis H (1991) EMBO J 10:585–592

    Google Scholar 

  • Berk AJ, Sharp PA (1977) Cell 12:721–732

    Google Scholar 

  • Borthwick IA, Srivastava G, Day AR, Pirola BA, Snoswell MA, May BK, Elliot WH (1985) Eur J Biochem 150:481–484

    Google Scholar 

  • Bradshaw RE, Pillar TM (1992) J Microbiol Methods 15:1–5

    Google Scholar 

  • Carter BLA, Bull AT (1971) J Gen Microbiol 65:265–273

    Google Scholar 

  • Cox TC, Bawden MJ, Martin A, May BK (1991) EMBO J 10:1891–1902

    Google Scholar 

  • Creusot F, Verdière J, Gaisne M, Slonimski PP (1988) J Mol Biol 204:263–276

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) Nucleic Acids Res 12:387–395

    Google Scholar 

  • Dierks P (1990) Molecular biology of eukaryotic 5-aminoevulinate synthase. In: Dailey HA (ed) Biosynthesis of heme and chlorophylls. McGraw-Hill, New York, pp 201–233

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Anal Biochem 132:6–13

    Google Scholar 

  • Forsburg SL, Guarente L (1988) Mol Cell Biol 8:647–654

    Google Scholar 

  • Guarente L, Mason T (1983) Cell 32:1279–1286

    Google Scholar 

  • Gurr SJ, Unkles SE, Kinghorn JR (1987) Spec Pub Soc Gen Microbiol Chapter 5, pp 93–139

    Google Scholar 

  • Hörtner H, Ammerer G, Hartter E, Hamilton B, Rylka J, Bilinski T, Ruis H (1982) Eur J Biochem 128:179–184

    Google Scholar 

  • Keng T, Guarente L (1987) Proc Natl Acad Sci USA 84:9113–9117

    Google Scholar 

  • Kozak M (1981) Nucleic Acids Res 12:857–872

    Google Scholar 

  • Kikuchi G, Kumar A, Talmage P, Shemin D (1958) J Biol Chem 233:12114–12119

    Google Scholar 

  • Labbe-Bois R, Labbe P (1990) Tetrapyrrole and heme biosynthesis in the yeast Saccharomyces cerevisiae. In: Dailey HA (ed) Biosynthesis of heme and chlorophylls. McGraw-Hill, New York, pp 235–285

    Google Scholar 

  • Leong SA, Williams PH, Ditta GS (1985) Nucleic Acids Res 13:5965–5976

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular Cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • McClung CR, Somerville JE, Guerinot ML, Chelm BK (1987) Gene 54:133–139

    Google Scholar 

  • Messing J, Vieira J (1982) Gene 19:269–276

    Google Scholar 

  • Padmanaban G, Venkateswar V, Rangarajan PN (1989) Trends Biochem Sci 14:492–496

    Google Scholar 

  • Pfeifer K, Prezant T, Guarente L (1987) Cell 49:19–27

    Google Scholar 

  • Pillar TM, Bradshaw RE (1991) Curr Genet 20:185–188

    Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons DW, Macdonald KD, Bufton AW (1953) Adv Genet 5:141–238

    Google Scholar 

  • Praekelt UM, Meacock PA (1990) Mol Gen Genet 223:97–106

    Google Scholar 

  • Raeder U, Broda P (1985) Lett Appl Microbiol 1:17–20

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Trueblood CE, Wright RM, Poyton RO (1988) Mol Cell Biol 8:4537–4540

    Google Scholar 

  • Urban-Grimal D, Volland C, Garnier T, Dehoux P, Labbe-Bois R (1986) Eur J Biochem 156:511–519

    Google Scholar 

  • Valdivia E, Martinez J, Ortega JM, Montoya E (1983) Can J Microbiol 29:1200–1204

    Google Scholar 

  • Verdiere J, Gaisne M, Labbe-Bois R (1991) Mol Gen Genet 228:300–306

    Google Scholar 

  • Zitomer R, Sellers JW, McCarter DW, Hastings GA, Wick P, Lowry CV (1987) Mol Cell Biol 7:2212–2220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. A. Grivell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradshaw, R.E., Dixon, S.W.C., Raitt, D.C. et al. Isolation and nucleotide sequence of the 5-aminolevulinate synthase gene from Aspergillus nidulans . Curr Genet 23, 501–507 (1993). https://doi.org/10.1007/BF00312642

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312642

Key words

Navigation