Skip to main content
Log in

Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Fifty-seven bacterial strains were isolated from PAH-contaminated soils using PAH-amended minimal medium. The isolates were screened for their production of biosurfactants and bioemulsifiers when grown in liquid media containing selected PAHs. The results suggest that many, but not all, of the isolates are able to produce biosurfactants or bioemulsifiers under the experimental conditions. The majority of the strains isolated on phenanthrene, pyrene, and fluoranthene were better emulsifiers than surface tension reducers and the stability of the formed emulsions was in general high. The strains isolated on anthracene were in general better in lowering the surface tension than in forming emulsions. In all strains, reduction of surface tension and emulsion formation did not correlate. However, in the majority of strains the two factors were associated with the bacterial cell surfaces, rather than the culture supernatants. Nevertheless, supernatants from selected surfactant-producing anthracene isolates increased the aqueous solubility of anthracene. Although a significant potential for surfactant and emulsifier production in the microbiota of the PAH-contaminated soils was found in this study, the ability of individual strains to mineralize PAHs did not coincide with production of surface-active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen PG, Francy DS, Duston KL, Thomas JM & Ward CH (1992) Biosurfactant production and emulsification capacity of subsurface microorganisms. Soil Decontamination Using Biological Processes. Karlsruhe, DECHEMA, Fedeal Republic of Germany.

    Google Scholar 

  • Aronstein BN, Calvillo YM & Alexander m (1991) Effects of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Enviro. Sci Technol. 25: 1728–1731.

    Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol. Rev. 45: 180–209.

    Google Scholar 

  • Bauchop T & Elsden SR (1960) The growth of microorganisms in relation to their energy. J. Gen. Microbiol. 23: 457–469.

    Google Scholar 

  • Bosch MP, Robert M, Mercadé ME, Espuny MJ, Parra JL & Guinea J (1988) Surface active compounds on microbial cultures. Tenside Surfactants Detergents 25 (4): 208–211.

    Google Scholar 

  • Broderick LS & Cooney JJ (1979) Emulsification of hydrocarbons by bacteria from freshwater ecosystems. Dev. Ind. Microbiol. 24: 425–434.

    Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3: 351–368.

    Google Scholar 

  • Cooper DG & Zajic JE (1980) Surface active compounds from microorganisms. Appl. Microbiol. 26: 229–253.

    Google Scholar 

  • Cooper DG, MacDonald CR, Duff SJB & Kosaric N (1981) Enhanced production of Surfactin from Bacillus subtilis by continuous product removal and metal cation addition. Appl. Environ Microbiol. 42(3): 408–412.

    Google Scholar 

  • Cooper DG (1986) Biosurfactants. Microbiol. Sci. 3 (5): 145–149.

    Google Scholar 

  • Edward DA, Luthy RG & Liu Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sci. Technol. 25 (1): 127–133.

    Google Scholar 

  • Francy DS, Thomas JM, Raymond RL & Ward CH (1991) Emulsification of hydrocarbons by subsurface bacteria. J. Ind. Microbiol. 8: 237–246.

    Google Scholar 

  • Gerson DF & Zajic JE (1978) Surfactant production from hydrocarbons by Corynebacterium lepus and Pseudomonas asphaltericus. Dev. Ind. Microbiol. 19: 577–599.

    Google Scholar 

  • Gerson DF & Zajic JE (1979) Microbial biosurfactants. Process Biochemistry 14(7): 20–29.

    Google Scholar 

  • Gibson DT & Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds, Vol 13 (pp 181–242).

  • Guerin WF & Jones GE (1988) Mineralization of phenanthrene by a Mycobacterium sp. Appl. Environ. Microbiol. 54(4): 937–944.

    Google Scholar 

  • Guerra-Santos L, Käppeli O & Fiechter A (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Environ. Microbiol. 48(2): 301–305.

    Google Scholar 

  • Guerra-Santos LH, Käppeli O & Fiechter A (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol. 24: 443–448.

    Google Scholar 

  • Gutnick DL & Shabtai Y (1987) Exopolysaccharide biopolymers. In: Kosaric N et al. (Ed) Biosurfactants and Biotechnology, Vol 25 (pp 211–246). Marcel Dekker Inc, New York.

    Google Scholar 

  • Haferburg D, Hommel R, Claus R & Kleber H (1986) Extracelluar microbial lipids as biosurfactants. Adv. Biochem. Eng/Biotechnol. 33: 53–93.

    Google Scholar 

  • Harayama S & Timmis KN (1989) Catabolism of aromatic hydrocarbons by Pseudomonas. In: Hopwood DD & Chater CF (Ed) Genitics of Bacterial Diversity (pp 151–171). Academic Press, Inc. London.

    Google Scholar 

  • Heitkamp MA & Cerniglia CE (1988a) Mineralization of polyaromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol. 54(6): p 1612–1614.

    Google Scholar 

  • Heitkamp MA, Franklin W & Cerniglia CE (1988b) Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl. Environ. Microbiol. 54(10): 2549–2555.

    Google Scholar 

  • Heitkamp MA, Freeman JP, Miller DW & Cerniglia CE (1988c) Pyrene degradation by a Mycobacteriumsp.: identification of ring oxidation and ring fission products. Appl. Environ. Microbiol. 54(10): 2556–2565.

    Google Scholar 

  • Holm E, Jensen V (1972) Aerobic chemoorganotrophic bacteria of a Danish beech forest. Oikos 23: 248–260.

    Google Scholar 

  • Kiyohara H, Nagao K & Yana K (1982) Rapid Screen for bacteria degrading water-insoluble hydrocarbons on agar plates. Appl. Environ. Microbiol. 43: 454–457.

    Google Scholar 

  • Kosaric N, Gray NCC & Cairns WL (1983) Microbial emulsifiers and de-emulsifiers. In: Rehm HJ & Reed G (Ed) Biotechnology, Vol 3 (pp 576–592). Verlag Chemie, Dearfield Beach, Fl.

    Google Scholar 

  • Laha S & Luthy RG (1991) Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environ. Sci. Technol. 25(11): 1921–1930.

    Google Scholar 

  • Liu Z, Laha S & Richard GL (1991) Surfactant solubilization of polyaromatic hydrocarbons in soil-water suspensions. Wat. Sci. Technol. 23: 475–485.

    Google Scholar 

  • MacElwee C, Lee H & Trevors JT (1990) Production of extracelluar emulsifying agent by Pseudomonas aeruginosa UG1. J. Ind. Microbiol. 5: 25–32.

    Google Scholar 

  • Maniatis T, Fritsh EF & Sambrook J (1982) Molecular Cloning: A Laboratory Manual (pp 440). Coldspring Harbour Press. New York.

    Google Scholar 

  • Margaritis A, Kennedy K, Zajic JE & Gerson DF (1979) Biosurfactant production by Norcardia erythropolis. Dev. Ind. Microbiol. 20: 623–630.

    Google Scholar 

  • Mueller JG, Chapman PJ, Blattmann BO & Pritchard P (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl. Environ. Microbiol. 56(4): 1079–1086.

    Google Scholar 

  • Mueller JG, Lantz SE, Devereux R, Berg JD and Pritchard PH (1994) Studies on the microbial ecology of PAH biodegradation. In: Hinchee RE, Leeson A, Semprini L, Ong SK (Eds) Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds (pp 218–238). Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  • Parkinson M (1985) Bio-surfactants. Biotechnol. Adv. 3: 65–83.

    Google Scholar 

  • Pearlman RS, Yalkowsky SH & Banerjee S (1984) Water solubilities of polynuclear aromatic and heteroaromatic compounds. J. Phys. Chem. Ref. Data, 13(2): 555–562.

    Google Scholar 

  • Rapp P, Bock H, Wray V & Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J. Gen. Microbiol. 115: 491–503.

    Google Scholar 

  • Rock F & Alexander M (1995) Biodegradation of hydrophobic compounds in the presence of surfactants. Environ. Toxicol. Chem. 14 (7): 1151–1158.

    Google Scholar 

  • Sims RC & Overcach MR (1983) Polynuclears in soil- plant systems. Residue Review, 88: 1–68.

    Google Scholar 

  • Singer MEV & Finnery WR (1990) Physiology of biosurfactant synthesis by Rhodococcus species H13-A. Can. J. Microbiol. 36: 741–745.

    Google Scholar 

  • Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol. 60(1): 258–263.

    Google Scholar 

  • VanDyke MI, Lee H & Trevors JT (1991) Applications of microbial surfactants. Biotech. Adv. 9: 241–252.

    Google Scholar 

  • Vigon BW & Rubin AJ (1989) Practical consideration in the surfactant-aided mobilization of contaminants in aquifers. J. Water Pollut. Control Fed. 61(7): 1233–1240.

    Google Scholar 

  • Volkering F, Breure AM, vanAndel JG & Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 61(5): 1699–1705.

    Google Scholar 

  • Wilson SC & Jones KJ (1993) Bioremediation of soil contaminanted with polynuclear aromatic hydrocarbons (PAHs): A review. Environ. Pollut. 81: 229–249.

    Google Scholar 

  • Zajic JE & Seffens W (1984) Biosurfactants. Crit. Rev. Biotechnol. 1 (2): 87–107.

    Google Scholar 

  • Zosim Z, Gutnick D & Rosenberg E (1982) Properties of hydrocarbon-in-water emulsions stabilized by Acinetobacter RAG-1 Emulsan. Biotech. Bioeng. XXIV: 281–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willumsen, P.A., Karlson, U. Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7, 415–423 (1996). https://doi.org/10.1007/BF00056425

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00056425

Key words

Navigation