Skip to main content

Osmoregulation and osmosensing by uptake carriers for compatible solutes in bacteria

  • Chapter
  • First Online:
Molecular Mechanisms Controlling Transmembrane Transport

Part of the book series: Topics in Current Genetics ((TCG,volume 9))

Abstract

In order to circumvent deleterious effects of hypo- and hyperosmotic conditions in their environment, bacterial cells have developed a number of mechanisms to counteract osmotic stress. The first response to an osmotic upshift is the activation of uptake systems for so-called compatible solutes, e.g. betaine, proline, or ectoine. Compatible solutes are taken up at the expense of metabolic energy and accumulated in the cytoplasm until osmotic compensation is reached. These uptake systems respond to osmotic stress by regulation at the level of both protein activity and gene expression. Activity regulation of uptake systems includes elaborate signal transduction mechanisms, involving sensing of appropriate stimuli and signal transduction to the catalytic (transport) domains of the carrier protein. Mechanisms of osmosensing and osmoregulation will be discussed mainly for BetP, the betaine uptake carrier of Corynebacterium glutamicum, as well as for ProP from Escherichia coli, OpuA from Lactococcus lactis, and a few other examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Bass RB, Strop P, Barclay M, Rees DC (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582-1587

    Article  PubMed  CAS  Google Scholar 

  • 2. Berrier CA, Besnard M, Ajouz B, Coulombe A, Ghazi A (1996) Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J Membr Biol 151:175-187

    Article  PubMed  CAS  Google Scholar 

  • 3. Bezanilla F, Perozo E (2002) Force and voltage sensors in one structure. Science 298:1562-1563

    Article  PubMed  CAS  Google Scholar 

  • 4. Bremer E, Krämer R (2000) Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes, p.79-97. In: Storz G, Hengge-Aronis R (eds), Bacterial stress responses. ASM Press, Washington DC

    Google Scholar 

  • 5. Burger U (1999) Untersuchungen zu Substratspezifität an zwei osmoregulierten Carrierproteinen (BetP und EctP) in Corynebacterium glutamicum. Diploma thesis, University of Köln, Germany

    Google Scholar 

  • 6. Burger U (2002) Struktur- und Funktionsanalysen am osmotisch regulierten Transporter BetP aus Corynebacterium glutamicum. PhD thesis, University of Köln, Germany

    Google Scholar 

  • 7. Cairney J, Booth IR, Higgins CF (1985a) Salmonella typhimurium proP gene encodes a transport system for the osmoprotectant betaine. J Bacteriol 164:1218-1223

    PubMed  CAS  Google Scholar 

  • 8. Cairney J, Booth IR, Higgins CF (1985b) Osmoregulation of gene expression in Salmonella typhimurium: proU encodes an osmotically induced betaine transport system. J Bacteriol 164:1224-1232

    PubMed  CAS  Google Scholar 

  • 9. Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive channel. Science 282:2220-2226

    Article  PubMed  CAS  Google Scholar 

  • 10. Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569-606

    Article  PubMed  CAS  Google Scholar 

  • 11. Culham DE, Lasby B, Marangoni AG, Milner JL, Steer BA, van Nues RW, Wood JM (1993) Isolation and sequencing of Escherichia coli gene proP reveals unusual structural features of the osmoregulatory proline/betaine transporter, ProP. J Mol Biol 229:268-276

    Article  PubMed  CAS  Google Scholar 

  • 12. Culham DE, Tripet B, Racher KI, Voegele RT, Hodges RS, Wood JM (2000) The role of the carboxyl terminal alpha-helical coiled-coil domain in osmosensing by transporter ProP of Escherichia coli. J Mol Recognit 13:309-322

    Article  PubMed  CAS  Google Scholar 

  • 13. Culham DE, Henderson J, Crane R, Wood JM (2003) Osmosensor ProP of Escherichia coli responds to the concentration, chemistry, and molecular size of osmolytes in the proteoliposome lumen. Biochemistry 42:410-420

    Article  PubMed  CAS  Google Scholar 

  • 14. Dinnbier U, Limpinsel E, Schmid R, Bakker EP (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150:348-357

    Article  PubMed  CAS  Google Scholar 

  • 15. Ebbighausen H, Weil B, Krämer R (1991) Carrier mediated acetate uptake in Corynebacterium glutamicum. Arch Microbiol 155:505-510

    Article  CAS  Google Scholar 

  • 16. Farwick M, Siewe RM, Krämer R (1995) Glycine betaine uptake after hyperosmotic shift in Corynebacterium glutamicum. J Bacteriol 177:4690-4695

    PubMed  CAS  Google Scholar 

  • 17. Glaasker E, Konings WN, Poolman B (1996) Glycine betaine fluxes in Lactobacillus plantarum during osmostasis and hyper- and hypo-osmotic shock. J Biol Chem 271:10060-10065

    Article  PubMed  CAS  Google Scholar 

  • 18. Gowrishankar J (1985) Identification of osmoresponsive genes in Escherichia coli: evidence of participation of potassium and praline transport systems in osmoregulation. J Bacteriol 164:434-445

    PubMed  CAS  Google Scholar 

  • 19. Gullingsrud J, Kosztin D, Schulten K (2001) Structural determinants of MscL gating structure studied by molecular dynamics simulation. Biophys J 80:2074-2081

    Article  PubMed  CAS  Google Scholar 

  • 20. Hallett FR, Marsh J, Nickel BG, Wood JM (1993) Mechanical properties of vesicles. II. A model for osmotic swelling and lysis. Biophys J 64:435-442

    Article  PubMed  CAS  Google Scholar 

  • 21. Jung K, Veen M, Altendorf K (2000) K+ and ionic strength directly influence the autophosphorylation activity of the putative turgor sensor KdpD of Escherichia coli. J Biol Chem 275:40142-40147

    Article  PubMed  CAS  Google Scholar 

  • 22. Koo S-P, Higgins CF, Booth IR (1991) Regulation of compatible solute accumulation in Salmonella typhimurium: evidence for a glycine betaine efflux system. J Gen Microbiol 137:2617-2625

    PubMed  CAS  Google Scholar 

  • 23. Kunte HJ, Crane RA, Culham DE, Richmond D, Wood JM (1999) Protein ProQ influences osmotic activation of compatible solute transporter ProP in Escherichia coli K-12. J Bacteriol 181:1537-1543

    PubMed  CAS  Google Scholar 

  • 24. Laimins LA, Rhoads DB, Epstein W (1981) Osmotic control of kdp operon expression in Escherichia coli. Proc Natl Acad Sci USA 78:464-468

    Article  PubMed  CAS  Google Scholar 

  • 25. Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity EMBO J 18:1730-1737

    Google Scholar 

  • 26. Ley O (2001) Bedeutung der Prolin-Biosynthese bei der Osmoregulation von Corynebacterium glutamicum. Diploma thesis, University of Köln, Germany

    Google Scholar 

  • 27. MacMillan SV, Alexander DA, Culham DE, Kunte HJ, Marshall EV, Rochon D, Wood JM (1999) The ion coupling and organic substrate specificities of osmoregulatory transporter ProP in Escherichia coli. Biochim Biophys Acta 1420:30-44

    Article  PubMed  CAS  Google Scholar 

  • 28. Martinac B (2001) Mechanosensitive channels in prokaryotes. Cell Physiol Biochem 11:61-76

    Article  PubMed  CAS  Google Scholar 

  • 29. Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotech Bioeng 49:111-129

    Article  CAS  Google Scholar 

  • 30. Milner JL, Grothe S, Wood JM (1988) Proline porter II is activated by a hyperosmotic shift in both whole cells and membrane vesicles of Escherichia coli K12. J Biol Chem 263:14900-14905

    PubMed  CAS  Google Scholar 

  • 31. Möker N (2002) Einfluss von Zwei-Komponenten-Systemen auf die Osmoregulation in Corynebacterium glutamicum. Diploma thesis, University of Köln, Germany

    Google Scholar 

  • 32. Morbach W, Krämer R (2002) Body shaping under water stress: osmosensing and osmoregulation of solute transport in bacteria. ChemBioChem 3:384-397

    Article  PubMed  CAS  Google Scholar 

  • 33. Nakashima K, Sugiura A, Kanamaru K, Mizuno T (1993a) Signal transduction between the two regulatory components involved in the regulation of the kdpABC operon in Escherichia coli: phosphorylation-dependent functioning of the positive regulator, KdpE. Mol Microbiol 7:109-116

    Article  PubMed  CAS  Google Scholar 

  • 34. Nakashima K, Sugiura A, Mizuno T (1993b) Functional reconstitution of the putative Escherichia coli osmosensor, KdpD, in liposomes. J Biochem 114:615-621

    PubMed  CAS  Google Scholar 

  • 35. Obis D, Guillot A, Gripon JC, Renault P, Bolotin A, Mistou MY (1999) Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J Bacteriol 181: 6238-6246

    PubMed  CAS  Google Scholar 

  • 36. Peter H, Burkovski A, Krämer R (1996) Isolation, characterization and expression of the Corynebacterium glutamicum betP gene, encoding the transport system for the compatible solute glycine betaine. J Bacteriol 178:5229-5234

    PubMed  CAS  Google Scholar 

  • 37. Peter H, Burkovski A, Krämer R (1998a) Osmosensing by N- and C-terminal extensions of the glycine betaine uptake system BetP of Corynebacterium glutamicum. J Biol Chem 273:2567-2574

    Article  PubMed  CAS  Google Scholar 

  • 38. Peter H, Weil B, Burkovski A, Krämer R, Morbach S (1998b) Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: identification, sequencing and characterization of the proline/ectoine uptake system ProP, and the ectoine/proline/glycine betaine carrier EctP. J Bacteriol 180:6005-6012

    PubMed  CAS  Google Scholar 

  • 39. Poolman B, Blount P, Folgering JHA, Friesen RHE, Moe PC, van der Heide T (2002) How do proteins sense water stress? Mol Microbiol 44:889-902

    Article  PubMed  CAS  Google Scholar 

  • 40. Pourkomailian B, Booth IR (1994) Glycine betaine transport by Staphylococcus aureus: evidence for feedback regulation of the activity of the two transport systems. Microbiology 140:3131-3138

    Article  PubMed  CAS  Google Scholar 

  • 41. Racher KI, Voegele RT, Marshall EV, Culham DE, Wood JM, Jung H, Bacon M, Cairns MT, Ferguson SM, Liang W-J, Henderson PJF, White G, Hallet FR (1999) Purification and reconstitution of an osmosensor: transporter ProP of Escherichia coli senses and responds to osmotic shifts. Biochemistry 38:1676-1684

    Article  PubMed  CAS  Google Scholar 

  • 42. Roe AJ, McLaggan D, O’Byrne CP, Booth IR (2000) Rapid inactivation of the Escherichia coli KdpK+ uptake system by high potassium concentrations. Mol Microbiol 35:1235-1243

    Article  PubMed  CAS  Google Scholar 

  • 43. Romeo Y, Obis D, Bouvier J, Guillot A, Fourcans A, Bouvier I, Gutierrez C, Mistou M-Y (2003) Osmoregulation in Lactococcus lactis: BusR, a transcriptional repressor of the glycine betaine uptake system BusA. Mol Microbiol 47:1135-1147

    Article  PubMed  CAS  Google Scholar 

  • 44. Rübenhagen R, Rönsch H, Jung H, Krämer R, Morbach S (2000) Osmosensor and osmoregulator properties of the betaine carrier BetP from Corynebacterium glutamicum in proteoliposomes. J Biol Chem 275:735-741

    Article  PubMed  Google Scholar 

  • 45. Rübenhagen R, Morbach S, Krämer R (2001) The osmoreactive betaine carrier BetP from Corynebacterium glutamicum is a sensor for cytoplasmic K+. EMBO J 20:5412-5420

    Article  PubMed  Google Scholar 

  • 46. Steger R (2002) Vergleichende Studien zur Aktivitätsregulation osmosensitiver Transporter aus Corynebacterium glutamicum. PhD thesis, University of Köln, Germany

    Google Scholar 

  • 47. Stimeling KW, Graham JE, Kaenjak A, Wilkinson BJ (1994) Evidence for feedback (trans) regulation of, and two systems for, glycine betaine transport by Staphylococcus aureus. Microbiology 140:3139-3144

    Article  PubMed  CAS  Google Scholar 

  • 48. Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265-268

    Article  PubMed  CAS  Google Scholar 

  • 49. Sukharev SI, Betanzos M, Chiang CS, Guy HR (2001) The gating mechanism of the large mechanosensitive channel MscL. Nature 409:720-724

    Article  PubMed  CAS  Google Scholar 

  • 50. Sutherland L, Carney J, Elmore MJ, Booth IR, Higgins CF (1986) Osmotic regulation of transcription: induction of the proU betaine transport gene is dependent on accumulation of intracellular potassium. J Bacteriol 168:805-814

    PubMed  CAS  Google Scholar 

  • 51. van der Heide T, Poolman B (2000) Osmoregulated ABC transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane. Proc Natl Acad Sci USA 97:7102-7106

    Article  Google Scholar 

  • 52. van der Heide T, Stuart MC, Poolman B (2001) On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine. EMBO J 20:7022-7032

    Article  Google Scholar 

  • 53. Verheul A, Glaasker E, Poolman B, Abee T (1997) Betaine and L-carnitine transport by Listeria monocytogenes Scott A in response to osmotic signals. J Bacteriol 179:6979-6985

    PubMed  CAS  Google Scholar 

  • 54. Wolf A, Krämer R, Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC 13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119-1134

    Article  PubMed  CAS  Google Scholar 

  • 55. Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230-262

    PubMed  CAS  Google Scholar 

  • 56. Ziegler C, Morbach S, Schiller D, Krämer, R, Tziatzios C, Schubert D, Kühlbrnadt W (2004) Propjection structure and oligomeric state of the osmoregulated sodium/glycine betaine symporter BetP from Corynebacterium glutamicum. J Mol Biol, in press

    Google Scholar 

  • 57. Zimmann P, Puppe W, Altendorf K (1995) Membrane topology analysis of the sensor kinase KdpD of Escherichia coli. J Biol Chem 270:28282-28288

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Morbach .

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin/Heidelberg

About this chapter

Cite this chapter

Morbach, S., Krämer, R. (2004). Osmoregulation and osmosensing by uptake carriers for compatible solutes in bacteria. In: Molecular Mechanisms Controlling Transmembrane Transport. Topics in Current Genetics, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95846

Download citation

  • DOI: https://doi.org/10.1007/b95846

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21837-1

  • Online ISBN: 978-3-540-40912-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics