Skip to main content
Log in

Optimisation of microwave-assisted production of acid condensate from palm kernel shell and its biological activities

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study reports on the microwave-assisted heating optimisation of acid condensate (AC) from palm kernel shell (PKS), using the central composite design (CCD) approach focusing on its total phenolic content (TPC) as response and its antimicrobial activity. Thermogravimetric-derivative thermogravimetric (TG-DTG) analysis clearly depicted the devolatilisation of lignocellulosic content of PKS. The highest TPC in concentrated AC extract (CACE), 451.51 ± 2.37 µg GAE/mg (R2 0.9870), was obtained at microwave power of 580 W, nitrogen flow rate of 2.4 L/min and final temperature of 480 ºC. Nitrogen flow rate had the highest effect on TPC with an F value of 63.65. Relative to ascorbic acid, CACE showed a higher Trolox equivalent antioxidant capacity (TEAC) but almost similar 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capabilities which can be attributed to the presence of 1,2-benzendiol, i.e. catechol (27.82%) and 1,3-dimethoxy-2-hydroxybenzene, i.e. syringol (22.76%). CACE also displayed good potential for antimicrobial application with high growth inhibition of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, Aspergillus niger and Fusarium oxysporum. In conclusion, PKS has a great potential to be used as raw material to produce AC (acid condensate) using microwave-assisted heating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Malaysian-German Chamber of Commerce and Industry (2017) Oil palm biomass & biogas in Malaysia, 2017 - potential for European SMEs. EUMalaysia Chamb Commer Ind (EUMCCI). https://businessmalaysia.eu/admin/js/fileman/Uploads/BiomassBiogas2018_Final_20180508.pdf. Accessed 14 June 2021

  2. Ahmad R, Hamidin N, Ali UFM, Abidin CZA (2015) Characterization of bio-oil from palm kernel shell pyrolysis. J Mech Eng Sci 7:1134–1140. https://doi.org/10.15282/jmes.7.2014.12.0110

    Article  Google Scholar 

  3. Mathew S, Zakaria ZA (2015) Pyroligneous acid—the smoky acidic liquid from plant biomass. Appl Microbiol Biotechnol 99:611–622. https://doi.org/10.1007/s00253-014-6242-1

    Article  Google Scholar 

  4. Abnisa F, Daud WMAW, Husin WNW, Sahu JN (2011) Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass Bioenerg 35:1863–1872. https://doi.org/10.1016/J.BIOMBIOE.2011.01.033

    Article  Google Scholar 

  5. Ma C, Song K, Yu J, Yang L, Zhao C, Wang W, Zu G, Zu Y (2013) Pyrolysis process and antioxidant activity of pyroligneous acid from Rosmarinus officinalis leaves. J Anal Appl Pyrolysis 104:38–47. https://doi.org/10.1016/j.jaap.2013.09.011

    Article  Google Scholar 

  6. Clark M, Tilman D (2017) Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ Res Lett 12:064016. https://doi.org/10.1088/1748-9326/aa6cd5

    Article  Google Scholar 

  7. Araújo E de S, Pimenta AS, Feijó FMC, Castro RVO, Fasciotti M, Monteiro TVC, de Lima KMG (2018) Antibacterial and antifungal activities of pyroligneous acid from wood of Eucalyptus urograndis and Mimosa tenuiflora. J Appl Microbiol 124:85–96. https://doi.org/10.1111/jam.13626

    Article  Google Scholar 

  8. Yahayu M, Mahmud KN, Mahamad MN, Ngadiran S, Lipeh S, Ujang S, Zakaria ZA (2017) Efficacy of pyroligneous acid from pineapple waste biomass as wood preserving agent. J Teknol 79:1–8. https://doi.org/10.11113/jt.v79.9987

    Article  Google Scholar 

  9. Ibrahim D, Kassim J, Sheh-Hong L, Rusli W (2013) Efficacy of pyroligneous acid from Rhizophora apiculata on pathogenic Candida albicans. J Appl Pharm Sci 3:7–13. https://doi.org/10.7324/JAPS.2013.3702

    Article  Google Scholar 

  10. Rabiu Z, Hamzah MAAM, Hasham R, Zakaria ZA (2020) Characterization and antiinflammatory properties of fractionated pyroligneous acid from palm kernel shell. Environ Sci Pollut Res 1–9.https://doi.org/10.1007/s11356-020-09209-x

  11. Aguirre JL, Baena J, Martín MT, Nozal L, González S, Manjón JL, Peinado M (2020) Composition, ageing and herbicidal properties of wood vinegar obtained through fast biomass pyrolysis. Energies 13:2418. https://doi.org/10.3390/en13102418

    Article  Google Scholar 

  12. Suresh G, Pakdel H, Rouissi T, Brar SK, Diarra M, Roy C (2020) Evaluation of pyroligneous acid as a therapeutic agent against Salmonella in a simulated gastrointestinal tract of poultry. Braz J Microbiol 51:1309–1316. https://doi.org/10.1007/s42770-020-00294-1

    Article  Google Scholar 

  13. Kimura Y, Suto S, Tatsuka M (2002) Evaluation of carcinogenic/Co-carcinogenic activity of Chikusaku-eki, a bamboo charcoal by-product used as a folk remedy, in BALB/c 3T3 cells. Biol Pharm Bull 25:1026–1029. https://doi.org/10.1248/bpb.25.1026

    Article  Google Scholar 

  14. Tiilikkala K, Fagernäs L, Tiilikkala J (2014) History and use of wood pyrolysis liquids as biocide and plant protection product. Open Agric J 4:111–118. https://doi.org/10.2174/1874331501004010111

    Article  Google Scholar 

  15. Ferreira SLC, Bruns RE, da Silva EGP, dos Santos WNL, Quintella CM, David JM, de Andrade JB, Breitkreitz MC, Jardim ICSF, Neto BB (2007) Statistical designs and response surface techniques for the optimization of chromatographic systems. J Chromatogr A 1158:2–14. https://doi.org/10.1016/j.chroma.2007.03.051

    Article  Google Scholar 

  16. Zolgharnein J, Shahmoradi A, Ghasemi JB (2013) Comparative study of Box-Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb (II) adsorption onto Robinia tree leaves. J Chemom 27:12–20. https://doi.org/10.1002/cem.2487

    Article  Google Scholar 

  17. Mensah RA, Jiang L, Asante-Okyere S, Qiang X, Jin C (2020) Kinetic parameter estimation from thermogravimetry and microscale combustion calorimetry. Int J Mech Mechatron Eng 14:54–63

    Google Scholar 

  18. Abas FZ, Ani FN, Zakaria ZA (2018) Microwave-assisted production of optimized pyrolysis liquid oil from oil palm fiber. J Clean Prod 182:404–413. https://doi.org/10.1016/j.jclepro.2018.02.052

    Article  Google Scholar 

  19. Loo AY, Jain K, Darah I (2008) Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chem 107:1151–1160. https://doi.org/10.1016/j.foodchem.2007.09.044

    Article  Google Scholar 

  20. Athmouni K, Belghith T, Bellassouad K, El Feki A, Ayadi H (2015) Effect of extraction solvents on the biomolecules and antioxidant properties of Scorzonera undulata (Asteraceae): application of factorial design optimization phenolic extraction. Acta Sci Pol Technol Aliment 14:313–320. https://doi.org/10.17306/J.AFS.2015.4.32

    Article  Google Scholar 

  21. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  Google Scholar 

  22. Biemer JJ (1973) Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Ann Clin Lab Sci 3(2):135–140

  23. Kartal SN, Yoshimura T, Imamura Y (2009) Modification of wood with Si compounds to limit boron leaching from treated wood and to increase termite and decay resistance. Int Biodeterior Biodegrad 63:187–190. https://doi.org/10.1016/j.ibiod.2008.08.006

    Article  Google Scholar 

  24. Wei Q, Ma X, Zhao Z, Zhang S, Liu S (2010) Antioxidant activities and chemical profiles of pyroligneous acids from walnut shell. J Anal Appl Pyrolysis 88:149–154. https://doi.org/10.1016/j.jaap.2010.03.008

    Article  Google Scholar 

  25. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  26. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150. https://doi.org/10.1016/j.jaap.2013.10.013

    Article  Google Scholar 

  27. Abdullah SS, Yusup S, Ahmad MM, Ramli A, Ismail L (2010) Thermogravimetry study on pyrolysis of various lignocellulosic biomass for potential hydrogen production. World Acad Sci Eng Technol 72:129–133. https://doi.org/10.5281/zenodo.1078693

    Article  Google Scholar 

  28. Nordin NIAA, Ariffin H, Andou Y, Hassan MA, Shirai Y, Nishida H, Yunus WMZW, Karuppuchamy S, Ibrahim NA (2013) Modification of oil palm mesocarp fiber characteristics using superheated steam treatment. Molecules 18:9132–9146. https://doi.org/10.3390/molecules18089132

    Article  Google Scholar 

  29. Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev 38:594–608. https://doi.org/10.1016/j.rser.2014.06.013

    Article  Google Scholar 

  30. Abhijeet P, Swagathnath G, Rangabhashiyam S, Asok Rajkumar M, Balasubramanian P (2020) Prediction of pyrolytic product composition and yield for various grass biomass feedstocks. Biomass Convers Biorefinery 10:663–674. https://doi.org/10.1007/s13399-019-00475-5

    Article  Google Scholar 

  31. Westerhof RJM, Brilman DWF, Van Swaaij WPM, Kersten SRA (2010) Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units. Ind Eng Chem Res 49(3):1160–1168. https://doi.org/10.1021/ie900885c

  32. Wallace CA, Afzal MT, Saha GC (2019) Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar. Bioresour Bioprocess 6:33. https://doi.org/10.1186/s40643-019-0268-2

    Article  Google Scholar 

  33. Pütün E (2010) Catalytic pyrolysis of biomass: effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy 35:2761–2766. https://doi.org/10.1016/j.energy.2010.02.024

    Article  Google Scholar 

  34. Wu Q, Zhang S, Hou B, Zheng H, Deng W, Liu D, Tang W (2015) Study on the preparation of wood vinegar from biomass residues by carbonization process. Bioresour Technol 179:98–103. https://doi.org/10.1016/j.biortech.2014.12.026

    Article  Google Scholar 

  35. Ma X, Wei Q, Zhang S, Shi L, Zhao Z (2011) Isolation and bioactivities of organic acids and phenols from walnut shell pyroligneous acid. J Anal Appl Pyrolysis 91:338–343. https://doi.org/10.1016/j.jaap.2011.03.009

    Article  Google Scholar 

  36. Ma C, Li W, Zu Y, Yang L, Li J (2014) Antioxidant properties of pyroligneous acid obtained by thermochemical conversion of Schisandra chinensis baill. Molecules 19:20821–20838. https://doi.org/10.3390/molecules191220821

    Article  Google Scholar 

  37. Fernandez Y, Arenillas A, Angel J (2011) Microwave heating applied to pyrolysis. Adv Induction Microw Heat Miner Org Mater. https://doi.org/10.5772/13548

    Article  Google Scholar 

  38. Mahmud KN, Yahayu M, Sarip SHM, Rizan NH, Min CB, Mustafa NF, Ngadiran S, Ujang S, Zakaria ZA (2016) Evaluation on efficiency of pyroligneous acid from palm kernel shell as antifungal and solid pineapple biomass as antibacterial and plant growth promoter. Sains Malaysiana 45:1423–1434

    Google Scholar 

  39. Abas FZ, Zakaria ZA, Ani FN (2018) Antimicrobial properties of optimized microwave-assisted pyroligneous acid from oil palm fiber. J Appl Pharm Sci 8:65–71. https://doi.org/10.7324/JAPS.2018.8711

    Article  Google Scholar 

  40. Ibrahim D, Kassim J, Lim S, Rusli W, Biotechnology I (2014) Evaluation of antibacterial effects of Rhizophora apiculata pyroligneous acid on pathogenic bacteria. Malays J Microbiol Pathog Bact 10:197–204

    Google Scholar 

  41. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582. https://doi.org/10.1128/cmr.12.4.564

    Article  Google Scholar 

  42. Kocaçalişkan I, Talan I, Terzi I (2006) Antimicrobial activity of catechol and pyrogallol as allelochemicals. Zeitschrift fur Naturforsch - Sect C J Biosci 61:639–642. https://doi.org/10.1515/znc-2006-9-1004

    Article  Google Scholar 

  43. Baimark Y, Niamsa N (2009) Study on wood vinegars for use as coagulating and antifungal agents on the production of natural rubber sheets. Biomass Bioenerg 33:994–998. https://doi.org/10.1016/j.biombioe.2009.04.001

    Article  Google Scholar 

Download references

Funding

The authors acknowledged the Ministry of Higher Education, Malaysia, for Research University (Q.J130000.2451.07G78) grant and the Graduate Research Assistantship to Mohd. Amir Asyraf Mohd. Hamzah. Our sincere gratitude also goes to the Malaysian Palm Oil Board for the GSAS Scholarship to Seri Elyanie Zulkifli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainul Akmar Zakaria.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors have given consent to participate.

Consent for publication

All authors have provided consent for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulkifli, S.E., Hamzah, M.A.A.M., Yahayu, M. et al. Optimisation of microwave-assisted production of acid condensate from palm kernel shell and its biological activities. Biomass Conv. Bioref. 13, 10387–10397 (2023). https://doi.org/10.1007/s13399-021-01631-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01631-6

Keywords

Navigation