Skip to main content

Advertisement

Log in

Future of Alzheimer’s Disease: Nanotechnology-Based Diagnostics and Therapeutic Approach

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is one of the neurodegenerative diseases that leads to the deposition of amyloid plaques in the neuropil as well as outside the cells in the brain leading to sometimes cell death. Even though there are various traditional diagnosis methods, they lack sensitivity towards the detection of AD. FDA has also approved some drugs for the treatment and alleviation of AD severity but they are not capable of curing AD. The use of nanotechnology for biomedical applications such as specific drug delivery vehicles to treat various neurodegenerative disorders including Alzheimer's disease (AD) and also nanotechnology offers highly sensitive nanodiagnostic tools that utilize different nanoparticles/nanostructures. AD therapy utilizing a multifunctional nanotechnology approach could be developed for designing therapeutic cocktails and diagnostic tools (nanosensors, imaging) that simultaneously and specifically target the important molecule involved in AD. The interaction of different functionalized nanostructures used for the therapy of AD and its different physicochemical interactions with the neuronal cells in vitro or in vivo needs to be discussed. In this review, we will briefly discuss about the genes/proteins that are involved in AD and its pathology, traditional AD diagnosis methods such as magnetic resonance imaging, PET scan, in vitro nanodiagnostic methods such as zinc oxide nanoflower platform, surface plasmon resonance nanoparticle, scanning tunnelling microscopy, and QCM-based detection. In vivo nanodiagnostic approaches such as the use of nanoparticles in AD diagnosis with MRI, optical imaging, quantum dots, nanotechnology-based drug delivery systems for the treatment of AD such as solid lipid nanoparticles, liposomes, polymeric nanoparticles, nanogels, fullerenes, nano-ceria, dendrimers, zinc oxide nanoflowers, gold nanoparticles, FDA-approved drugs and nasal route of drug administration for effective AD treatment will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aderibigbe, B. A., & Naki, T. (2018). Design and efficacy of nanogels formulations for intranasal administration. Molecules, 23(6), 1241.

    Article  Google Scholar 

  2. Akhtar, N., Metkar, S. K., Girigoswami, A., & Girigoswami, K. (2017). ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Materials Science and Engineering C, 78, 960–968. https://doi.org/10.1016/j.msec.2017.04.118

    Article  Google Scholar 

  3. Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., & Erickson, B. J. (2017). Deep learning for brain MRI segmentation: State of the art and future directions. Journal of digital imaging, 30(4), 449–459.

    Article  Google Scholar 

  4. Aliev, G., Ashraf, G. M., Tarasov, V. V., Chubarev, V. N., Leszek, J., Gasiorowski, K., Makhmutova, A., Baeesa, S. S., Avila-Rodriguez, M., & Ustyugov, A. A. (2019). Alzheimer’s Disease-Future Therapy Based on Dendrimers. Current Neuropharmacology, 17(3), 288–294.

    Article  Google Scholar 

  5. Ansari, M. A., & Scheff, S. W. (2010). Oxidative stress in the progression of Alzheimer disease in the frontal cortex. Journal of Neuropathology & Experimental Neurology, 69(2), 155–167.

    Article  Google Scholar 

  6. Appel, J., Potter, E., Shen, Q., Pantol, G., Greig, M. T., Loewenstein, D., & Duara, R. (2009). A comparative analysis of structural brain MRI in the diagnosis of Alzheimer’s disease. Behavioural neurology, 21(1, 2), 13–19.

    Article  Google Scholar 

  7. Brambilla, D., le Droumaguet, B., Nicolas, J., Hashemi, S. H., Wu, L.-P., Moghimi, S. M., Couvreur, P., & Andrieux, K. (2011). Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine Nanotechnology Biology and Medicine, 7(5), 521–540.

    Article  Google Scholar 

  8. Canevelli, M., Piscopo, P., Talarico, G., Vanacore, N., Blasimme, A., Crestini, A., Tosto, G., Troili, F., Lenzi, G. L., & Confaloni, A. (2014). Familial Alzheimer’s disease sustained by presenilin 2 mutations: Systematic review of literature and genotype–phenotype correlation. Neuroscience & Biobehavioral Reviews, 42, 170–179.

    Article  Google Scholar 

  9. Charbgoo, F., Bin, A. M., & Darroudi, M. (2017). Cerium oxide nanoparticles: green synthesis and biological applications. International journal of nanomedicine, 12, 1401.

    Article  Google Scholar 

  10. de Leon, M. J., DeSanti, S., Zinkowski, R., Mehta, P. D., Pratico, D., Segal, S., Clark, C., Kerkman, D., DeBernardis, J., & Li, J. (2004). MRI and CSF studies in the early diagnosis of Alzheimer’s disease. Journal of internal medicine, 256(3), 205–223.

    Article  Google Scholar 

  11. de Reuck, J. L., Deramecourt, V., Auger, F., Durieux, N., Cordonnier, C., Devos, D., Defebvre, L., Moreau, C., Caparros-Lefebvre, D., & Leys, D. (2014). Iron deposits in post-mortem brains of patients with neurodegenerative and cerebrovascular diseases: a semi-quantitative 7.0 T magnetic resonance imaging study. European journal of neurology, 21(7), 1026–1031.

    Article  Google Scholar 

  12. den Haan, J., Morrema, T. H. J., Verbraak, F. D., de Boer, J. F., Scheltens, P., Rozemuller, A. J., Bergen, A. A. B., Bouwman, F. H., & Hoozemans, J. J. (2018). Amyloid-beta and phosphorylated tau in post-mortem Alzheimer’s disease retinas. Acta neuropathologica communications, 6(1), 1–11.

    Google Scholar 

  13. dos Santos, T. N., da Silva, S., Arruda, R., Ugioni, K. S., Canteiro, P. B., de Bem, S. G., Mendes, C., Silveira, P. C. L., & Muller, A. P. (2020). Gold nanoparticles treatment reverses brain damage in Alzheimer’s disease model. Molecular neurobiology, 57(2), 926–936.

    Article  Google Scholar 

  14. Dowding, J. M., Song, W., Bossy, K., Karakoti, A., Kumar, A., Kim, A., Bossy, B., Seal, S., Ellisman, M. H., & Perkins, G. (2014). Cerium oxide nanoparticles protect against A β-induced mitochondrial fragmentation and neuronal cell death. Cell Death & Differentiation, 21(10), 1622–1632.

    Article  Google Scholar 

  15. Dykman LA, Khlebtsov NG (2011) Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae (aнглoязычнaя вepcия) 3(2 (9))

  16. Efthymiou, A. G., & Goate, A. M. (2017). Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Molecular neurodegeneration, 12(1), 1–12.

    Article  Google Scholar 

  17. Erdő, F., Bors, L. A., Farkas, D., Bajza, Á., & Gizurarson, S. (2018). Evaluation of intranasal delivery route of drug administration for brain targeting. Brain research bulletin, 143, 155–170.

    Article  Google Scholar 

  18. Escamilla-Ayala, A. A., Sannerud, R., Mondin, M., Poersch, K., Vermeire, W., Paparelli, L., Berlage, C., Koenig, M., Chavez-Gutierrez, L., & Ulbrich, M. H. (2020). Super-resolution microscopy reveals majorly mono-and dimeric presenilin1/γ-secretase at the cell surface. eLife, 9, e56679–e56679.

    Article  Google Scholar 

  19. Farkhondeh T, Forouzanfar F, Roshanravan B, Samarghandian S (2019) Curcumin effect on non-amyloidogenic pathway for preventing alzheimer’s disease. Biointerface Research in Applied Chemistry 9(4):4085–4089 http://www.funrich.org

  20. Fonseca, L. C., Lopes, J. A., Vieira, J., Viegas, C., Oliveira, C. S., Hartmann, R. P., & Fonte, P. (2021). Intranasal drug delivery for treatment of Alzheimer’s disease. Drug Delivery and Translational Research, 11(2), 411–425.

    Article  Google Scholar 

  21. Forner, S., Baglietto-Vargas, D., Martini, A. C., Trujillo-Estrada, L., & LaFerla, F. M. (2017). Synaptic impairment in Alzheimer’s disease: A dysregulated symphony. Trends in neurosciences, 40(6), 347–357.

    Article  Google Scholar 

  22. Giorgio, A., & de Stefano, N. (2013). Clinical use of brain volumetry. Journal of Magnetic Resonance Imaging, 37(1), 1–14.

    Article  Google Scholar 

  23. Girigoswami, A., Ramalakshmi, M., Akhtar, N., Metkar, S. K., & Girigoswami, K. (2019). ZnO Nanoflower petals mediated amyloid degradation - an in vitro electrokinetic potential approach. Materials Science and Engineering C, 101, 169–178. https://doi.org/10.1016/j.msec.2019.03.086

    Article  Google Scholar 

  24. Girigoswami, K., Ku, S. K., Ryu, J., & Park, C. B. (2008). A synthetic amyloid lawn system for high-throughput analysis of amyloid toxicity and drug screening. Biomaterials, 29, 2813–2819. https://doi.org/10.1016/j.biomaterials.2008.03.022

    Article  Google Scholar 

  25. Gleerup, HS, Hasselbalch, SG, Simonsen, AH. (2019). Biomarkers for Alzheimer’s disease in saliva: A systematic review. Disease Markers.  https://doi.org/10.1155/2019/4761054

  26. Güner G, Lichtenthaler SF (2020) The substrate repertoire of γ-secretase/presenilin. In: Seminars in Cell & Developmental Biology. Elsevier

  27. Guo, X., Lie, Q., Liu, Y., Jia, Z., Gong, Y., Yuan, X., & Liu, J. (2021). Multifunctional selenium quantum dots for the treatment of Alzheimer’s disease by reducing Aβ-neurotoxicity and oxidative stress and alleviate neuroinflammation. ACS Applied Materials & Interfaces, 13(26), 30261–30273.

    Article  Google Scholar 

  28. Hadavi, D., & Poot, A. A. (2016). Biomaterials for the Treatment of Alzheimer’s Disease. Frontiers in bioengineering and biotechnology, 4, 49.

    Article  Google Scholar 

  29. Haes, A. J., Chang, L., Klein, W. L., & van Duyne, R. P. (2005). Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. Journal of the American Chemical Society, 127(7), 2264–2271.

    Article  Google Scholar 

  30. Hajipour, M. J., Santoso, M. R., Rezaee, F., Aghaverdi, H., Mahmoudi, M., & Perry, G. (2017). Advances in alzheimer’s diagnosis and therapy: The implications of nanotechnology. Trends in biotechnology, 35(10), 937–953.

    Article  Google Scholar 

  31. Haribabu, V., Girigoswami, K., Sharmiladevi, P., & Girigoswami, A. (2020). Water-Nanomaterial Interaction to Escalate Twin-Mode Magnetic Resonance Imaging. ACS Biomaterials Science & Engineering, 6(8), 4377–4389.

    Article  Google Scholar 

  32. Harilal, S., Jose, J., Parambi, D. G. T., Kumar, R., Mathew, G. E., Uddin, M. S., Kim, H., & Mathew, B. (2019). Advancements in nanotherapeutics for Alzheimer’s disease: Current perspectives. Journal of Pharmacy and Pharmacology, 71(9), 1370–1383.

    Article  Google Scholar 

  33. Herholz, K., Salmon, E., Perani, D., Baron, J.-C., Holthoff, V., Frölich, L., Schönknecht, P., Ito, K., Mielke, R., & Kalbe, E. (2002). Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. NeuroImage, 17(1), 302–316.

    Article  Google Scholar 

  34. Hernandez-Sapiens, M. A., Reza-Zaldívar, E. E., Márquez-Aguirre, A. L., Gómez-Pinedo, U., Matias-Guiu, J., Cevallos, R. R., Mateos-Díaz, J. C., Sánchez-González, V. J., & Canales-Aguirre, A. A. (2022). Presenilin mutations and their impact on neuronal differentiation in Alzheimer’s disease. Neural Regeneration Research, 17(1), 31.

    Article  Google Scholar 

  35. Hu, B., Dai, F., Fan, Z., Ma, G., Tang, Q., & Zhang, X. (2015). Nanotheranostics: Congo red/Rutin-MNPs with enhanced magnetic resonance imaging and H2O2-responsive therapy of Alzheimer’s disease in APPswe/PS1dE9 transgenic mice. Advanced Materials, 27(37), 5499–5505.

    Article  Google Scholar 

  36. Huy, P. D. Q., & Li, M. S. (2014). Binding of fullerenes to amyloid beta fibrils: Size matters. Physical Chemistry Chemical Physics, 16(37), 20030–20040.

    Article  Google Scholar 

  37. Hwang, S. S., Chan, H., Sorci, M., van Deventer, J., Wittrup, D., Belfort, G., & Walt, D. (2019). Detection of amyloid β oligomers toward early diagnosis of Alzheimer’s disease. Analytical biochemistry, 566, 40–45.

    Article  Google Scholar 

  38. Islam J, Zhang Y (2019) Understanding 3D CNN behavior for Alzheimer’s disease diagnosis from brain PET scan. arXiv preprint arXiv:191204563

  39. Israel, L. L., Galstyan, A., Holler, E., & Ljubimova, J. Y. (2020). Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. Journal of Controlled Release, 320, 45–62.

    Article  Google Scholar 

  40. Jaiswal, J. K., & Simon, S. M. (2004). Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends in cell biology, 14(9), 497–504.

    Article  Google Scholar 

  41. Jouanne, M., Rault, S., & Voisin-Chiret, A.-S. (2017). Tau protein aggregation in Alzheimer’s disease: An attractive target for the development of novel therapeutic agents. European journal of medicinal chemistry, 139, 153–167.

    Article  Google Scholar 

  42. Kabanov, A. V., & Vinogradov, S. V. (2009). Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angewandte Chemie International Edition, 48(30), 5418–5429.

    Article  Google Scholar 

  43. Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F., & Farokhzad, O. C. (2012). Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chemical Society Reviews, 41(7), 2971–3010.

    Article  Google Scholar 

  44. Kang, H., Park, T., Choi, I., Lee, Y., Ito, E., Hara, M., & Noh, J. (2009). Formation of large ordered domains in benzenethiol self-assembled monolayers on Au (1 1 1) observed by scanning tunneling microscopy. Ultramicroscopy, 109(8), 1011–1014.

    Article  Google Scholar 

  45. Kim, Y. H., Lee, S.-M., Cho, S., Kang, J.-H., Minn, Y.-K., Park, H., & Choi, S. H. (2019). Amyloid beta in nasal secretions may be a potential biomarker of Alzheimer’s disease. Scientific reports, 9(1), 1–9.

    Google Scholar 

  46. Klajnert, B., Cortijo-Arellano, M., Cladera, J., & Bryszewska, M. (2006). Influence of dendrimer’s structure on its activity against amyloid fibril formation. Biochemical and biophysical research communications, 345(1), 21–28.

    Article  Google Scholar 

  47. Korolev, I. O. (2014). Alzheimer’s disease: A clinical and basic science review. Medical Student Research Journal, 4(1), 24–33.

    Google Scholar 

  48. Kotormán, M., Romhányi, D., Alpek, B., et al. (2021). Fruit juices are effective anti-amyloidogenic agents. Biologia Futura, 72, 257–262. https://doi.org/10.1007/s42977-020-00064-y

    Article  Google Scholar 

  49. Laske, C., Sohrabi, H. R., Frost, S. M., López-de-Ipiña, K., Garrard, P., Buscema, M., Dauwels, J., Soekadar, S. R., Mueller, S., & Linnemann, C. (2015). Innovative diagnostic tools for early detection of Alzheimer’s disease. Alzheimer’s & Dementia, 11(5), 561–578.

    Article  Google Scholar 

  50. Lee, J. C., Kim, S. J., Hong, S., & Kim, Y. (2019). Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers. Experimental & molecular medicine, 51(5), 1–10.

    Article  Google Scholar 

  51. Lee, J.-H., Kang, D.-Y., Kim, S.-U., Yea, C.-H., Oh, B.-K., & Choi, J.-W. (2009). Electrical detection of β-amyloid (1–40) using scanning tunneling microscopy. Ultramicroscopy, 109(8), 923–928.

    Article  Google Scholar 

  52. Liebman JF, Severin K, Klapötke TM (2003) Inorganic Exotic Molecules. In: Encyclopedia of Physical Science and Technology. Elsevier, pp 817–838

  53. Loureiro, J. A., Andrade, S., Duarte, A., Neves, A. R., Queiroz, J. F., Nunes, C., Sevin, E., Fenart, L., Gosselet, F., & Coelho, M. A. N. (2017). Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules, 22(2), 277.

    Article  Google Scholar 

  54. Metkar, S. K., Girigoswami, A., Murugesan, R., & Girigoswami, K. (2017a). In vitro and in vivo insulin amyloid degradation mediated by Serratiopeptidase. Materials Science and Engineering C, 70, 728–735. https://doi.org/10.1016/j.msec.2016.09.049

    Article  Google Scholar 

  55. Metkar SK, Girigoswami A, Murugesan R, Girigoswami K (2017b) Lumbrokinase for degradation and reduction of amyloid fibrils associated with amyloidosis.15:96–104. https://doi.org/10.1016/j.jab.2017.01.003

  56. Metkar, S. K., Ghosh, S., Girigoswami, A., & Girigoswami, K. (2019). Prion Peptide 106–126 Degradation Potential of Serratiopetidase and Lumbrokinase - an In Vitro and In Silico Perspective. CNS & Neurological Disorders - Drug Targets, 18(9), 723–731. https://doi.org/10.2174/1871527318666191021150002

    Article  Google Scholar 

  57. Metkar, S. K., Girigoswami, A., Vijayashree, R., & Girigoswami, K. (2020). Attenuation of subcutaneous insulin induced amyloid mass in vivo using Lumbrokinase and Serratiopeptidase. Int J of Biol Macromolecules, 163, 128–134. https://doi.org/10.1016/j.ijbiomac.2020.06.256

    Article  Google Scholar 

  58. Madaan, K., Kumar, S., Poonia, N., Lather, V., & Pandita, D. (2014). Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. Journal of pharmacy & bioallied sciences, 6(3), 139.

    Article  Google Scholar 

  59. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., & Weiss, S. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709), 538–544.

    Article  Google Scholar 

  60. Mourtas, S., Canovi, M., Zona, C., Aurilia, D., Niarakis, A., la Ferla, B., Salmona, M., Nicotra, F., Gobbi, M., & Antimisiaris, S. G. (2011). Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials, 32(6), 1635–1645.

    Article  Google Scholar 

  61. Nazem, A., & Mansoori, G. A. (2008). Nanotechnology solutions for Alzheimer’s disease: Advances in research tools, diagnostic methods and therapeutic agents. Journal of Alzheimer’s disease, 13(2), 199–223.

    Article  Google Scholar 

  62. Nazem, A., & Mansoori, G. A. (2011). Nanotechnology for Alzheimer’s disease detection and treatment. Insciences J, 1(4), 169–193.

    Article  Google Scholar 

  63. Neha, B., Ganesh, B., & Preeti, K. (2013). Drug delivery to the brain using polymeric nanoparticles: A review. International Journal of Pharmaceutical and Life Sciences, 2(3), 107–132.

    Article  Google Scholar 

  64. Nesterov, E. E., Skoch, J., Hyman, B. T., Klunk, W. E., Bacskai, B. J., & Swager, T. M. (2005). In vivo optical imaging of amyloid aggregates in brain: Design of fluorescent markers. Angewandte Chemie International Edition, 44(34), 5452–5456.

    Article  Google Scholar 

  65. Park CB, Ku SH, Girigoswami K, Ryu J (2011) Method for screening drug for neurodegenerative diseases treatment. Korean Patent: Appl. No. 10–2007–0112804 (2007. 11. 06) Patent No. 10–1082484–0000 (2011. 11. 02)

  66. Nordberg, A., Rinne, J. O., Kadir, A., & Långström, B. (2010). The use of PET in Alzheimer disease. Nature Reviews Neurology, 6(2), 78–87.

    Article  Google Scholar 

  67. Patel, D. A., Henry, J. E., & Good, T. A. (2007). Attenuation of β-amyloid-induced toxicity by sialic-acid-conjugated dendrimers: Role of sialic acid attachment. Brain research, 1161, 95–105.

    Article  Google Scholar 

  68. Pathak M, Singhal R (2022). Therapeutic and diagnostic applications of nanocomposites in the treatment Alzheimer’s disease studies. Biointerface Research in Applied Chemistry 12(1), 940–960.

  69. Pet Imaging In Alzheimer’s Disease (2013) https://www.bangkokmedjournal.com/article/pet-imaging-in-alzheimer-rsquo-s-disease/152/article. Vol 5. Accessed on 25.05.2022.

  70. Picone, P., Ditta, L. A., Sabatino, M. A., Militello, V., San Biagio, P. L., di Giacinto, M. L., Cristaldi, L., Nuzzo, D., Dispenza, C., & Giacomazza, D. (2016). Ionizing radiation-engineered nanogels as insulin nanocarriers for the development of a new strategy for the treatment of Alzheimer’s disease. Biomaterials, 80, 179–194.

    Article  Google Scholar 

  71. Picone, P., Sabatino, M. A., Ditta, L. A., Amato, A., San Biagio, P. L., Mulè, F., Giacomazza, D., Dispenza, C., & di Carlo, M. (2018). Nose-to-brain delivery of insulin enhanced by a nanogel carrier. Journal of Controlled Release, 270, 23–36.

    Article  Google Scholar 

  72. Piñero, J., Ramírez-Anguita, J. M., Saüch-Pitarch, J., Ronzano, F., Centeno, E., Sanz, F., & Furlong, L. I. (2020). The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic acids research, 48(D1), D845–D855.

    Google Scholar 

  73. Pleskova S, Mikheeva E, Gornostaeva E (2018) Using of quantum dots in biology and medicine. Cellular and Molecular Toxicology of Nanoparticles 323–34.

  74. Podolski, I. Y., Podlubnaya, Z. A., Kosenko, E. A., Mugantseva, E. A., Makarova, E. G., Marsagishvili, L. G., Shpagina, M. D., Kaminsky, Y. G., Andrievsky, G. V., & Klochkov, V. K. (2007). Effects of hydrated forms of C60 fullerene on amyloid β-peptide fibrillization in vitro and performance of the cognitive task. Journal of nanoscience and nanotechnology, 7(4–5), 1479–1485.

    Article  Google Scholar 

  75. Rabiee, N., Ahmadi, S., Afshari, R., Khalaji, S., Rabiee, M., Bagherzadeh, M., Fatahi, Y., Dinarvand, R., Tahriri, M., & Tayebi, L. (2021). Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer’s Disease. Advanced Therapeutics, 4(3), 2000076.

    Article  Google Scholar 

  76. Rajan KB, Weuve J, Barnes LL, McAninch EA, Wilson RS, Evans DA. (2021). Population estimate of people with clinical Alzheimer's disease and mild cognitive impairment in the United States (2020–2060). Alzheimer’s & Dementia 17(12), 1966–1975. https://doi.org/10.1002/alz.12362

  77. Rotman, M., Snoeks, T. J. A., & van der Weerd, L. (2011). Pre-clinical optical imaging and MRI for drug development in Alzheimer’s disease. Drug Discovery Today: Technologies, 8(2–4), e117–e125.

    Article  Google Scholar 

  78. Rutegård, M. K., Båtsman, M., Axelsson, J., Brynolfsson, P., Brännström, F., Rutegård, J., Ljuslinder, I., Blomqvist, L., Palmqvist, R., & Rutegård, M. (2019). PET/MRI and PET/CT hybrid imaging of rectal cancer–description and initial observations from the RECTOPET (REctal Cancer trial on PET/MRI/CT) study. Cancer Imaging, 19(1), 1–9.

    Article  Google Scholar 

  79. Safenkova, I. V., Zherdev, A. V., & Dzantiev, B. B. (2019). Using atomic force microscopy to assess surface modification of gold nanoparticles. Biointerface Res App Chem, 9, 3894–3897.

    Article  Google Scholar 

  80. Saini, S., Sharma, T., Jain, A., Kaur, H., Katare, O. P., & Singh, B. (2021). Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence. Colloids and Surfaces B: Biointerfaces, 205, 111838.

    Article  Google Scholar 

  81. Salmon, E., Sadzot, B., Maquet, P., Degueldre, C., Lemaire, C., Rigo, P., Comar, D., & Franck, G. (1994). Differential diagnosis of Alzheimer’s disease with PET. Journal of nuclear medicine: Official publication, Society of Nuclear Medicine, 35(3), 391–398.

    Google Scholar 

  82. Salve, P., Pise, S., & Bali, N. (2016). Formulation and Evaluation of Solid Lipid Nanoparticle Based Transdermal Drug Delivery System for Alzheimer’s Disease. Research Journal of Pharmaceutical Dosage Forms and Technology, 8(2), 73–80.

    Article  Google Scholar 

  83. Schelterns, P., & Feldman, H. (2003). Treatment of Alzheimer’s disease; current status and new perspectives. The Lancet Neurology, 2(9), 539–547.

    Article  Google Scholar 

  84. Schindler, S. E., Bollinger, J. G., Ovod, V., Mawuenyega, K. G., Li, Y., Gordon, B. A., Holtzman, D. M., Morris, J. C., Benzinger, T. L. S., & Xiong, C. (2019). High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology, 93(17), e1647–e1659.

    Article  Google Scholar 

  85. Sharifi, S., Samani, A. A., Ahmadian, E., Eftekhari, A., Derakhshankhah, H., Jafari, S., Mokhtarpour, M., Vahed, S. Z., Salatin, S., & Dizaj, S. M. (2019). Oral delivery of proteins and peptides by mucoadhesive nanoparticles. Biointerface Research in Applied Chemistry, 9(2), 3849–3852.

    Article  Google Scholar 

  86. Silveira M, Marques J (2010) Boosting Alzheimer disease diagnosis using PET images. In: 2010 20th International Conference on Pattern Recognition. IEEE, pp 2556–2559

  87. Sivanesan S, Rajeshkumar S (2019) Gold nanoparticles in diagnosis and treatment of alzheimer’s disease. In: Nanobiotechnology in Neurodegenerative Diseases. Springer, pp 289–306

  88. Sivasubramanian, M., Hsia, Y., & Lo, L. W. (2014). Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer. Frontiers in Molecular Biosciences., 17(1), 15.

    Google Scholar 

  89. Sood, S., Jain, K., & Gowthamarajan, K. (2014). Intranasal therapeutic strategies for management of Alzheimer’s disease. Journal of drug targeting, 22(4), 279–294.

    Article  Google Scholar 

  90. Špringer, T., Hemmerová, E., Finocchiaro, G., Krištofiková, Z., Vyhnálek, M., & Homola, J. (2020). Surface plasmon resonance biosensor for the detection of tau-amyloid β complex. Sensors and Actuators B: Chemical, 316, 128146.

    Article  Google Scholar 

  91. Tan, M. S., Tan, L., Jiang, T., Zhu, X. C., Wang, H. F., Jia, C. D., & Yu, J. T. (2014). Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell death & disease, 5(8), e1382–e1382.

    Article  Google Scholar 

  92. Thakur, G., Micic M., Yang Y., Li W., Movia D., Giordani S., Zhang H., Leblanc RM. (2011). Conjugated quantum dots inhibit the amyloid β (1–42) fibrillation process. International Journal of Alzheimer’s Disease.  https://doi.org/10.4061/2011/502386

  93. Thendral, V., Dharshni, T., Ramalakshmi, M., Girigoswami, A., & Girigoswami, K. (2019). Cerium oxide nanocluster based nanobiosensor for ROS detection. Biocatalysis and agricultural biotechnology, 19, 101124.

    Article  Google Scholar 

  94. Tiwari, S., Atluri, V., Kaushik, A., Yndart, A., & Nair, M. (2019). Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. International journal of nanomedicine, 14, 5541.

    Article  Google Scholar 

  95. Vakilinezhad, M. A., Amini, A., Javar, H. A., Zarandi, B. F. B. B., Montaseri, H., & Dinarvand, R. (2018). Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. DARU Journal of Pharmaceutical Sciences, 26(2), 165–177.

    Article  Google Scholar 

  96. van Oostveen, W. M., & de Lange, E. (2021). Imaging techniques in Alzheimer’s disease: A review of applications in early diagnosis and longitudinal monitoring. International Journal of Molecular Sciences., 22(4), 2110.

    Article  Google Scholar 

  97. Veerabhadrappa, B., Delaby, C., Hirtz, C., Vialaret, J., Alcolea, D., Lleó, A., Fortea, J., Santosh, M. S., Choubey, S., & Lehmann, S. (2020). Detection of amyloid beta peptides in body fluids for the diagnosis of alzheimer’s disease: Where do we stand? Critical reviews in clinical laboratory sciences, 57(2), 99–113.

    Article  Google Scholar 

  98. Vieira, D. B., & Gamarra, L. F. (2016). Getting into the brain: Liposome-based strategies for effective drug delivery across the blood–brain barrier. International journal of nanomedicine, 11, 5381.

    Article  Google Scholar 

  99. Vorobyov, V., Kaptsov, V., Gordon, R., Makarova, E., Podolski, I., & Sengpiel, F. (2015). Neuroprotective effects of hydrated fullerene C 60: Cortical and hippocampal eeg interplay in an amyloid-infused rat model of alzheimer’s disease. Journal of Alzheimer’s Disease, 45(1), 217–233.

    Article  Google Scholar 

  100. Wadghiri, Y. Z., Sigurdsson, E. M., Sadowski, M., Elliott, J. I., Li, Y., Scholtzova, H., Tang, C. Y., Aguinaldo, G., Pappolla, M., & Duff, K. (2003). Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 50(2), 293–302.

    Article  Google Scholar 

  101. Xie, L., Luo, Y., Lin, D., Xi, W., Yang, X., & Wei, G. (2014). The molecular mechanism of fullerene-inhibited aggregation of Alzheimer’s β-amyloid peptide fragment. Nanoscale, 6(16), 9752–9762.

    Article  Google Scholar 

  102. Xu, C., & Qu, X. (2014). Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia materials, 6(3), e90–e90.

    Article  Google Scholar 

  103. Yang, Z.-Z., Zhang, Y.-Q., Wang, Z.-Z., Wu, K., Lou, J.-N., & Qi, X.-R. (2013). Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. International journal of pharmaceutics, 452(1–2), 344–354.

    Article  Google Scholar 

  104. Yang, H. D., Kim, D. H., Lee, S. B., & Young, L. D. (2016). History of Alzheimer’s Disease. Dementia and neurocognitive disorders., 15(4), 115–121.

    Article  Google Scholar 

  105. Youn, Y. C., Kang, S., Suh, J., Park, Y. H., Kang, M. J., Pyun, J.-M., Choi, S. H., Jeong, J. H., Park, K. W., & Lee, H.-W. (2019). Blood amyloid-β oligomerization associated with neurodegeneration of Alzheimer’s disease. Alzheimer’s research & therapy, 11(1), 40.

    Article  Google Scholar 

  106. Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., Durazzo, A., Lucarini, M., Eder, P., & Silva, A. M. (2020). Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 25(16), 3731.

    Article  Google Scholar 

  107. Zoltowska, K. M., & Berezovska, O. (2018). Dynamic nature of presenilin1/γ-secretase: Implication for Alzheimer’s disease pathogenesis. Molecular neurobiology, 55(3), 2275–2284.

    Article  Google Scholar 

  108. Zrazhevskiy, P., Sena, M., & Gao, X. (2010). Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews, 39(11), 4326–4354.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial and infrastructural support from Chettinad Academy of Research and Education (CARE). GA thanks CARE for providing research fellowship as a JRF.

Funding

Council of Scientific and Industrial Research (CSIR), India (Scheme No. 01(2868)/ 17/EMR-II), INDIA, is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Contributions

NS and GA were involved in the compilation of literature and draft into a review paper. AG and KG participated in the supervision and incorporation of scientific views. AG and KG finalized the draft.

Corresponding author

Correspondence to Koyeli Girigoswami.

Ethics declarations

Conflict of Interest

No

Research Involving Humans and Animals Statement

No

Informed Consent

No

Funding Statement

No

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agraharam, G., Saravanan, N., Girigoswami, A. et al. Future of Alzheimer’s Disease: Nanotechnology-Based Diagnostics and Therapeutic Approach. BioNanoSci. 12, 1002–1017 (2022). https://doi.org/10.1007/s12668-022-00998-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-00998-8

Keywords

Navigation