Skip to main content

Advertisement

Log in

NF-κB-Mediated Neuroinflammation in Parkinson’s Disease and Potential Therapeutic Effect of Polyphenols

  • Review Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Different animal and human studies from last two decades in the case of Parkinson’s disease (PD) have concentrated on oxidative stress due to increased inflammation and cytokine-dependent neurotoxicity leading to induction of dopaminergic (DA) degeneration pathway in the nigrostriatal region. Chronic inflammation, the principle hallmark of PD, forms the basis of neurodegeneration. Aging in association with activation of glia due to neuronal injury, perhaps because of immune alterations and genetic predispositions, leads to deregulation of inflammatory pathways premising the onset of PD. A family of inducible transcription factors, nuclear factor-κB (NF-κB), is found to show expression in various cells and tissues, such as microglia, neurons, and astrocytes which play an important role in activation and regulation of inflammatory intermediates during inflammation. Both canonical and non-canonical NF-κB pathways are involved in the regulation of the stimulated cells. During the prodromal/asymptomatic stage of age-associated neurodegenerative diseases (i.e., PD and AD), chronic neuroinflammation may act silently as the driver of neuronal dysfunction. Though research has provided an insight over age-related neurodegeneration in PD, elaborative role of NF-κB in neuroinflammation is yet to be completely understood and thus requires more investigation. Polyphenols, a group of naturally occurring compound in medicinal plants, have gained attention because of their anti-oxidative and anti-neuroinflammatory properties in neurodegenerative diseases. In this aspect, this review highlights the role of NF-κB and the possible therapeutic roles of polyphenols in NF-κB-mediated neuroinflammation in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PD:

Parkinson’s disease

DA:

Dopaminergic

TNF-α:

Tumor necrosis factor

MPTPq:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

CNS:

Central nervous system

SNpc:

Substantia nigra pars compacta

CGA:

Chlorogenic acid

ROS:

Reactive oxygen species

TH:

Tyrosine hydroxylase

References

  • Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E et al (2007) Motif module map reveals enforcement of aging by continual NF-κB activity. Genes & Development 21:000–000

    CAS  Google Scholar 

  • Aggarwal BB, Shishodia S (2004) Suppression of the nuclear factor-κB activation pathway by spice-derived phytochemicals: reasoning for seasoning. Annals of the New York Academy of Sciences 1030:434–441

    CAS  PubMed  Google Scholar 

  • Aggarwal BB, Surh YJ, Shishodia S (Eds.) (2007) The molecular targets and therapeutic uses of curcumin in health and disease (Vol. 595). Springer Science & Business Media

  • Ahn KS, Aggarwal BB (2005) Transcription factor NF-κB: a sensor for smoke and stress signals. Annals of the New York Academy of Sciences 1056:218–233

    CAS  PubMed  Google Scholar 

  • Anest V, Hanson JL, Cogswell PC, Steinbrecher KA, Strahl BD et al (2003) A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression. Nature 423:659

    CAS  PubMed  Google Scholar 

  • Arai H, Furuya T, Yasuda T, Miura M, Mizuno Y et al (2004) Neurotoxic effects of lipopolysaccharide on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1β, and expression of caspase-11 in mice. Journal of Biological Chemistry 279:51647–51653

    CAS  Google Scholar 

  • Baeuerle PA, Baltimore D (1996) NF-κB: ten years after. Cell 87:13–20

    CAS  PubMed  Google Scholar 

  • Baeuerle PA, Henkel T (1994) Function and activation of NF-kappaB in the immune system. Annual Review of Immunology 12:141–179

    CAS  PubMed  Google Scholar 

  • Bahar E, Kim J-Y, Yoon H (2017) Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-κB and HO-1/Nrf2 pathways. International Journal of Molecular Sciences 18:1989

    PubMed Central  Google Scholar 

  • Baiguera C, Alghisi M, Pinna A, Bellucci A, De Luca MA et al (2012) Late-onset Parkinsonism in NFκB/c-Rel-deficient mice. Brain 135:2750–2765

    PubMed  PubMed Central  Google Scholar 

  • Bakalkin GY, Yakovleva T, Terenius L (1993) NF-κB-like factors in the murine brain. Developmentally-regulated and tissue-specific expression. Molecular Brain Research 20:137–146

    CAS  PubMed  Google Scholar 

  • Baldwin AS Jr (1996) The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol 14:649–681

    CAS  PubMed  Google Scholar 

  • Barcia C, de Pablos V, Bautista-Hernández V, Sánchez-Bahillo Á, Bernal I et al (2005) Increased plasma levels of TNF-α but not of IL1-β in MPTP-treated monkeys one year after the MPTP administration. Parkinsonism & Related Disorders 11:435–439

    Google Scholar 

  • Begum AN, Jones MR, Lim GP, Morihara T, Kim P et al (2008) Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 326:196–208

    CAS  PubMed  Google Scholar 

  • Ben Haim L, Carrillo-de Sauvage M-A, Ceyzériat K, Escartin C (2015) Elusive roles for reactive astrocytes in neurodegenerative diseases. Frontiers in Cellular Neuroscience 9:278

    PubMed  PubMed Central  Google Scholar 

  • Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol 12:715

    CAS  PubMed  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    CAS  PubMed  Google Scholar 

  • Bernard D, Quatannens B, Begue A, Vandenbunder B, Abbadie C (2001) Antiproliferative and antiapoptotic effects of cRel may occur within the same cells via the up-regulation of manganese superoxide dismutase. Cancer Research 61:2656–2664

    CAS  PubMed  Google Scholar 

  • Birla H, Rai SN, Singh SS, Zahra W, Rawat A et al (2019) Tinospora cordifolia suppresses neuroinflammation in parkinsonian mouse model. Neuromolecular Medicine 21:42–53

    CAS  PubMed  Google Scholar 

  • Blandini F, Greenamyre J (1998) Prospects of glutamate antagonists in the therapy of Parkinson’s disease. Fundamental & Clinical Pharmacology 12:4–12

    CAS  Google Scholar 

  • Blesa J, Przedborski S (2014) Parkinson’s disease: animal models and dopaminergic cell vulnerability. Frontiers in Neuroanatomy 8:155

    PubMed  PubMed Central  Google Scholar 

  • Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Frontiers in Neuroanatomy 9:91

    PubMed  PubMed Central  Google Scholar 

  • Blin O, Desnuelle C, Rascol O, Borg M, Saint Paul HP et al (1994) Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson’s disease and multiple system atrophy. Journal of the Neurological Sciences 125:95–101

    CAS  PubMed  Google Scholar 

  • Block ML, Zecca L, Hong J-S (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews Neuroscience 8:57

    CAS  PubMed  Google Scholar 

  • Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Molecular Neurobiology 41:242–247

    CAS  PubMed  Google Scholar 

  • Cao JP, Wang HJ, Yu JK, Liu HM, Gao DS (2008) The involvement of NF-κB p65/p52 in the effects of GDNF on DA neurons in early PD rats. Brain Res Bull 76:505–511

    CAS  PubMed  Google Scholar 

  • Capiralla H, Vingtdeux V, Zhao H, Sankowski R, Al-Abed Y et al (2012) Resveratrol mitigates lipopolysaccharide-and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. Journal of Neurochemistry 120:461–472

    CAS  PubMed  Google Scholar 

  • Caudle WM, Zhang J (2009) Glutamate, excitotoxicity, and programmed cell death in Parkinson disease. Experimental Neurology 220:–230

    CAS  PubMed  Google Scholar 

  • Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS et al (2007) Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. Journal of Neuroscience 27:8138–8148

    CAS  PubMed  Google Scholar 

  • Chen C, Manning A (1995) Transcriptional regulation of endothelial cell adhesion molecules: a dominant role for NF-kappa B. Agents and Actions Supplements 47:135–141

    CAS  PubMed  Google Scholar 

  • Chen FE, Huang D-B, Chen Y-Q, Ghosh G (1998) Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA. Nature 391:–410

    CAS  PubMed  Google Scholar 

  • Chen C, Edelstein LC, Gélinas C (2000) The Rel/NF-κB family directly activates expression of the apoptosis inhibitor Bcl-xL. Molecular and Cellular Biology 20:2687–2695

    PubMed  PubMed Central  Google Scholar 

  • Chen G, Liu J, Jiang L, Ran X, He D et al (2018) Peiminine protects dopaminergic neurons from inflammation-induced cell death by inhibiting the ERK1/2 and NF-κB signalling pathways. International Journal of Molecular Sciences 19:821

    PubMed Central  Google Scholar 

  • Chen Y, Wu T, Li H, Li X, Li Q et al (2019) Dl-3-n-butylphthalide exerts dopaminergic neuroprotection through inhibition of neuroinflammation. Frontiers in Aging Neuroscience 11

  • Cheng C, Zhu X (2019) Cordycepin mitigates MPTP-induced Parkinson’s disease through inhibiting TLR/NF-κB signaling pathway. Life Sciences 223:120–127

    CAS  PubMed  Google Scholar 

  • Cheng Y, He G, Mu X, Zhang T, Li X, Hu J, Xu B, Du G (2008) Neuroprotective effect of baicalein against MPTP neurotoxicity: behavioral, biochemical and immunohistochemical profile. Neurosci Lett 441:16–20

    CAS  PubMed  Google Scholar 

  • Chinta SJ, Lieu CA, DeMaria M, Laberge RM, Campisi J et al (2013) Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson’s disease? J Intern Med 273:429–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    CAS  PubMed  Google Scholar 

  • Choi JH, Jang M, Cho I-H (2018) Neuroprotective effects of a traditional multi-herbal medicine Kyung-Ok-Ko in an animal model of Parkinson’s disease: inhibition of MAPKs and NF-κB pathways and activation of Keap1-Nrf2 pathway. Frontiers in Pharmacology 9:1444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cianciulli A, Dragone T, Calvello R, Porro C, Trotta T et al (2015) IL-10 plays a pivotal role in anti-inflammatory effects of resveratrol in activated microglia cells. International Immunopharmacology 24:369–376

    CAS  PubMed  Google Scholar 

  • Cunningham LA, Su C (2002) Astrocyte delivery of glial cell line-derived neurotrophic factor in a mouse model of Parkinson’s disease. Experimental Neurology 174:230–242

    CAS  PubMed  Google Scholar 

  • Daher JP, Volpicelli-Daley LA, Blackburn JP, Moehle MS, West AB (2014) Abrogation of α-synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proceedings of the National Academy of Sciences 111:9289–9294

    CAS  Google Scholar 

  • DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388:548

    CAS  PubMed  Google Scholar 

  • Doo A-R, Kim S-N, Park J-Y, Cho KH, Hong J et al (2010) Neuroprotective effects of an herbal medicine, Yi-Gan San on MPP+/MPTP-induced cytotoxicity in vitro and in vivo. Journal of Ethnopharmacology 131:433–442

    PubMed  Google Scholar 

  • Doorn KJ, Goudriaan A, Blits-Huizinga C, Bol JG, Rozemuller AJ et al (2014a) Increased amoeboid microglial density in the olfactory bulb of Parkinson’s and Alzheimer’s patients. Brain Pathology 24:152–165

    CAS  PubMed  Google Scholar 

  • Doorn KJ, Moors T, Drukarch B, van de Berg WD, Lucassen PJ et al (2014b) Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathologica Communications 2:90

    PubMed  PubMed Central  Google Scholar 

  • Dou F, Chu X, Zhang B, Liang L, Lu G et al (2018) EriB targeted inhibition of microglia activity attenuates MPP+ induced DA neuron injury through the NF-κB signaling pathway. Molecular Brain 11:75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duh EJ, Maury WJ, Folks TM, Fauci AS, Rabson AB (1989) Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kappa B sites in the long terminal repeat. Proceedings of the National Academy of Sciences 86:5974–5978

    CAS  Google Scholar 

  • Ebrahimi A, Schluesener H (2012) Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Research Reviews 11:329–345

    CAS  PubMed  Google Scholar 

  • El Mohsen MMA, Kuhnle G, Rechner AR, Schroeter H, Rose S et al (2002) Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radical Biology and Medicine 33:1693–1702

    Google Scholar 

  • El Mohsen MA, Marks J, Kuhnle G, Moore K, Debnam E et al (2006) Absorption, tissue distribution and excretion of pelargonidin and its metabolites following oral administration to rats. Br J Nutr 95:51–58

    PubMed  Google Scholar 

  • Feng R, Lu Y, Bowman LL, Qian Y, Castranova V, Ding M (2005) Inhibition of activator protein-1, NF-κB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem 280:27888–27895

    CAS  PubMed  Google Scholar 

  • Finco TS, Baldwin AS (1995) Mechanistic aspects of NF-κB regulation: the emerging role of phosphorylation and proteolysis. Immunity 3:263–272

    CAS  PubMed  Google Scholar 

  • Fu W, Zhuang W, Zhou S, Wang X (2015) Plant-derived neuroprotective agents in Parkinson’s disease. American Journal of Translational Research 7:1189

    PubMed  PubMed Central  Google Scholar 

  • Gauss KA, Nelson-Overton LK, Siemsen DW, Gao Y, DeLeo FR et al (2007) Role of NF-κB in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-α. Journal of Leukocyte Biology 82:729–741

    CAS  PubMed  Google Scholar 

  • Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ et al (2007) Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proceedings of the National Academy of Sciences 104:18754–18759

    CAS  Google Scholar 

  • Goetz CG, Pal G (2014) Initial management of Parkinson’s disease. BMJ 349:g6258

    PubMed  Google Scholar 

  • Gray CM, Remouchamps C, McCorkell KA, Solt LA, Dejardin E et al (2014) Noncanonical NF-κB signaling is limited by classical NF-κB activity. Sci Signal 7:ra13–ra13

    PubMed  PubMed Central  Google Scholar 

  • Guo Y, Yang B, Shi L, Gu J, Chen H (2012) Anti-inflammation mechanism of curcumin in mice with lipopolysaccharide-induced Parkinson’s disease. Journal of Medical Postgraduates 25:582–587

    CAS  Google Scholar 

  • Gupta SC, Kim JH, Prasad S, Aggarwal BB (2010a) Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 29:405–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SC, Sundaram C, Reuter S, Aggarwal BB (2010b) Inhibiting NF-κB activation by small molecules as a therapeutic strategy, Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 1799:775–787

  • Haas RH, Nasirian F, Nakano K, Ward D, Pay M et al (1995) Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Annals of Neurology 37:714–722

    CAS  PubMed  Google Scholar 

  • Harman D (1992) Free radical theory of aging. Mutation Research/DNAging 275:257–266

    CAS  Google Scholar 

  • Harman D (2006) Free radical theory of aging: an update. Ann N Y Acad Sci 1067:10–21

    CAS  PubMed  Google Scholar 

  • Hattingen E, Magerkurth J, Pilatus U, Mozer A, Seifried C et al (2009) Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson’s disease. Brain 132:3285–3297

    PubMed  Google Scholar 

  • Hattori N, Tanaka M, Ozawa T, Mizuno Y (1991) Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease. Annals of Neurology 30:563–571

    CAS  PubMed  Google Scholar 

  • Hong D-P, Fink AL, Uversky VN (2008) Structural characteristics of α-synuclein oligomers stabilized by the flavonoid baicalein. Journal of Molecular Biology 383:214–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino K, Sugiyama T, Matsumoto M, Tanaka T, Saito M et al (2006) IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature 440:949

    CAS  PubMed  Google Scholar 

  • Hunot S, Brugg B, Ricard D, Michel PP, Muriel M-P et al (1997) Nuclear translocation of NF-κB is increased in dopaminergic neurons of patients with Parkinson disease. Proceedings of the National Academy of Sciences 94:7531–7536

    CAS  Google Scholar 

  • Hwang SJ, Kim Y-W, Park Y, Lee H-J, Kim K-W (2014) Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflammation Research 63:81–90

    CAS  PubMed  Google Scholar 

  • Hwang SJ, Jun SH, Park Y, Cha S-H, Yoon M et al (2015) Green synthesis of gold nanoparticles using chlorogenic acid and their enhanced performance for inflammation nanomedicine: nanotechnology. Biology and Medicine 11:1677–1688

    CAS  Google Scholar 

  • Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M et al (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathologica 106:518–526

    CAS  PubMed  Google Scholar 

  • Inta I, Paxian S, Maegele I, Zhang W, Pizzi M et al (2006) Bim and Noxa are candidates to mediate the deleterious effect of the NF-κB subunit RelA in cerebral ischemia. Journal of Neuroscience 26:12896–12903

    CAS  PubMed  Google Scholar 

  • Janle EM, Lila MA, Grannan M, Wood L, Higgins A et al (2010) Pharmacokinetics and tissue distribution of 14C-labeled grape polyphenols in the periphery and the central nervous system following oral administration. Journal of Medicinal Food 13:926–933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jobin C, Bradham CA, Russo MP, Juma B, Narula AS et al (1999) Curcumin blocks cytokine-mediated NF-κB activation and proinflammatory gene expression by inhibiting inhibitory factor I-κB kinase activity. The Journal of Immunology 163:3474–3483

    CAS  PubMed  Google Scholar 

  • Kalt W, Blumberg JB, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SA et al (2008) Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. Journal of Agricultural and Food Chemistry 56:705–712

    CAS  PubMed  Google Scholar 

  • Kaltschmidt B, Kaltschmidt C (2009) NF-κB in the nervous system. Cold Spring Harbor Perspectives in Biology 1:a001271

    PubMed  PubMed Central  Google Scholar 

  • Kaltschmidt C, Kaltschmidt B, Baeuerle PA (1993) Brain synapses contain inducible forms of the transcription factor NF-κB. Mechanisms of Development 43:135–147

    CAS  PubMed  Google Scholar 

  • Kaltschmidt C, Kaltschmidt B, Neumann H, Wekerle H, Baeuerle PA (1994) Constitutive NF-kappa B activity in neurons. Molecular and Cellular Biology 14:3981–3992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaltschmidt C, Kaltschmidt B, Baeuerle PA (1995) Stimulation of ionotropic glutamate receptors activates transcription factor NF-kappa B in primary neurons. Proceedings of the National Academy of Sciences 92:9618–9622

    CAS  Google Scholar 

  • Kaltschmidt B, Widera D, Kaltschmidt C (2005) Signaling via NF-κB in the nervous system. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Research 1745:287–299

    CAS  Google Scholar 

  • Karin M, Liu Z-G, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    CAS  PubMed  Google Scholar 

  • Kim N, Do J, Bae J-S, Jin HK, Kim J-H et al (2018) Piperlongumine inhibits neuroinflammation via regulating NF-κB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells. Journal of Pharmacological Sciences 137:195–201

    CAS  PubMed  Google Scholar 

  • Kitamura Y, Itano Y, Kubo T, Nomura Y (1994) Suppressive effect of FK-506, a novel immunosuppressant, against MPTP-induced dopamine depletion in the striatum of young C57BL/6 mice. Journal of Neuroimmunology 50:221–224

    CAS  PubMed  Google Scholar 

  • Knott C, Stern G, Wilkin G (2000) Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and-2. Molecular and Cellular Neuroscience 16:724–739

    CAS  PubMed  Google Scholar 

  • Kundu JK, Shin YK, Kim SH, Surh Y-J (2006) Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-κB in mouse skin by blocking IκB kinase activity. Carcinogenesis 27:1465–1474

    CAS  PubMed  Google Scholar 

  • Kurkowska-Jastrzębska I, Wrońska A, Kohutnicka M, Członkowski A, Członkowska A (1999) The inflammatory reaction following 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol 156:50–61

    PubMed  Google Scholar 

  • Kwon S-H, Lee H-K, Kim J-A, Hong S-I, Kim H-C et al (2010) Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. European Journal of Pharmacology 649:210–217

    CAS  PubMed  Google Scholar 

  • Lan X, Liu R, Sun L, Zhang T, Du G (2011) Methyl salicylate 2-O-β-D-lactoside, a novel salicylic acid analogue, acts as an anti-inflammatory agent on microglia and astrocytes. J Neuroinflammation 8:98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langston J, Forno L, Tetrud J, Reeves A, Kaplan J et al (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine exposure. Annals of Neurology 46:598–605

    CAS  PubMed  Google Scholar 

  • Lanzillotta A, Sarnico I, Ingrassia R, Boroni F, Branca C et al (2010) The acetylation of RelA in Lys310 dictates the NF-κB-dependent response in post-ischemic injury. Cell Death & Disease 1:e96

    CAS  Google Scholar 

  • Lanzillotta A, Porrini V, Bellucci A, Benarese M, Branca C et al (2015) NF-κB in innate neuroprotection and age-related neurodegenerative diseases. Frontiers in Neurology 6:98

    PubMed  PubMed Central  Google Scholar 

  • Lawrence T (2009) The nuclear factor NF-κB pathway in inflammation. Cold Spring Harbor Perspectives in Biology 1:a001651

    PubMed  PubMed Central  Google Scholar 

  • Lawson L, Perry V, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    CAS  PubMed  Google Scholar 

  • Ledoux AC, Perkins ND (2014) NF-κB and the cell cycle. 76–81

    CAS  PubMed  Google Scholar 

  • Lee J-Y, Nagano Y, Taylor JP, Lim KL, Yao T-P (2010a) Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 189:671–679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E et al (2010b) Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. The FASEB Journal 24:2533–2545

    CAS  PubMed  Google Scholar 

  • Lee W-H, Loo C-Y, Bebawy M, Luk F, Mason RS, Rohanizadeh R (2013) Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 11:338–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee E, Park HR, Ji ST, Lee Y, Lee J (2014) Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1, 2, 3, 4-tetrahydropyridine-induced Parkinson's disease model by downregulating the activations of nuclear factor-κB, ERK, and JNK. Journal of Neuroscience Research 92:130–139

    CAS  PubMed  Google Scholar 

  • Li Z, Nabel GJ (1997) A new member of the I kappaB protein family, I kappaB epsilon, inhibits RelA (p65)-mediated NF-kappaB transcription. Molecular and Cellular Biology 17:6184–6190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Verma IM (2002) NF-κB regulation in the immune system. Nature Reviews Immunology 2:725

    CAS  PubMed  Google Scholar 

  • Lim H-S, Kim YJ, Kim B-Y, Park G, Jeong S-J (2018) The anti-neuroinflammatory activity of tectorigenin pretreatment via downregulated NF-κB and ERK/JNK pathways in BV-2 microglial and microglia inactivation in mice with lipopolysaccharide. Frontiers in Pharmacology 9:462

    PubMed  PubMed Central  Google Scholar 

  • Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. The Journal of Nutrition 134:3479S–3485S

    CAS  PubMed  Google Scholar 

  • Lofrumento DD, Nicolardi G, Cianciulli A, Nuccio FD, Pesa VL et al (2014) Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson’s-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immunity 20:249–260

    PubMed  Google Scholar 

  • Lukiw WJ, Bazan NG (1998) Strong nuclear factor-κB-DNA binding parallels cyclooxygenase-2 gene transcription in aging and in sporadic Alzheimer’s disease superior temporal lobe neocortex. J Neurosci Res 53:583–592

    CAS  PubMed  Google Scholar 

  • Luo Y, Hoffer A, Hoffer B, Qi X (2015) Mitochondria: a therapeutic target for Parkinson’s disease? Int J Mol Sci 16:20704–20730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lv R, Du L, Liu X, Zhou F, Zhang Z et al (2019) Rosmarinic acid attenuates inflammatory responses through inhibiting HMGB1/TLR4/NF-κB signaling pathway in a mouse model of Parkinson’s disease. Life Sciences 223:158–165

    CAS  PubMed  Google Scholar 

  • Marchetti B, L’episcopo F, Morale MC, Tirolo C, Testa N et al (2013) Uncovering novel actors in astrocyte–neuron crosstalk in P arkinson’s disease: the W nt/β-catenin signaling cascade as the common final pathway for neuroprotection and self-repair. European Journal of Neuroscience 37:1550–1563

    Google Scholar 

  • Mattson MP (2005) NF-κB in the survival and plasticity of neurons. Neurochem Res 30:883–893

    CAS  PubMed  Google Scholar 

  • Meberg PJ, Kinney WR, Valcourt EG, Routtenberg A (1996) Gene expression of the transcription factor NF-κ B in hippocampus: regulation by synaptic activity. Molecular Brain Research 38:179–190

    CAS  PubMed  Google Scholar 

  • Meffert MK, Baltimore D (2005) Physiological functions for brain NF-κB. Trends in Neurosciences 28:37–43

    CAS  PubMed  Google Scholar 

  • Meffert MK, Chang JM, Wiltgen BJ, Fanselow MS, Baltimore D (2003) NF-κB functions in synaptic signaling and behavior. Nature Neuroscience 6:1072

    CAS  PubMed  Google Scholar 

  • Mena MA, García de Yébenes J (2008) Glial cells as players in parkinsonism: the “good,” the “bad,” and the “mysterious” glia. The Neuroscientist 14:544–560

    CAS  PubMed  Google Scholar 

  • Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL et al (1997) IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278:860–866

    CAS  PubMed  Google Scholar 

  • Milbury PE, Kalt W (2010) Xenobiotic metabolism and berry flavonoid transport across the blood–brain barrier. J Agric Food Chem 58:3950–3956

    CAS  PubMed  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K et al (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochemical and Biophysical Research Communications 163:1450–1455

    CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K et al (1994) Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neuroscience Letters 165:208–210

    CAS  PubMed  Google Scholar 

  • Mogi M, Kondo T, Mizuno Y, Nagatsu T (2007) p53 protein, interferon-γ, and NF-κB levels are elevated in the parkinsonian brain. Neuroscience Letters 414:94–97

    CAS  PubMed  Google Scholar 

  • Monzani E, Nicolis S, Dell'Acqua S, Capucciati A, Bacchella C, Zucca FA, Mosharov EV, Sulzer D, Zecca L, Casella L (2019) Dopamine, oxidative stress and protein–quinone modifications in parkinson's and other neurodegenerative diseases. Angewandte Chemie International Edition 58:6512–6527

    CAS  PubMed  Google Scholar 

  • More SV, Kumar H, Kim IS, Song S-Y, Choi D-K (2013) Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators of Inflammation 2013:952375

    PubMed  PubMed Central  Google Scholar 

  • Mu X, He G, Cheng Y, Li X, Xu B et al (2009) Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacology Biochemistry and Behavior 92:642–648

    CAS  Google Scholar 

  • Mu X, He G-R, Yuan X, Li X-X, Du G-H (2011) Baicalein protects the brain against neuron impairments induced by MPTP in C57BL/6 mice. Pharmacology Biochemistry and Behavior 98:286–291

    CAS  Google Scholar 

  • Müller CW, Rey FA, Sodeoka M, Verdine GL, Harrison SC (1995) Structure of the NF-κB p50 homodimer bound to DNA. Nature 373:311

    PubMed  Google Scholar 

  • Mytilineou C, Werner P, Molinari S, Di Rocco A, Cohen G et al (1994) Impaired oxidative decarboxylation of pyruvate in fibroblasts from patients with Parkinson’s disease. Journal of Neural Transmission-Parkinson’s Disease and Dementia Section 8:223–228

    CAS  PubMed  Google Scholar 

  • Noort AR, Tak PP, Tas SW (2015) Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? Arthritis Research & Therapy 17:15

    Google Scholar 

  • Norris KL, Hao R, Chen L-F, Lai C-H, Kapur M et al (2015) Convergence of parkin, PINK1 and α-synuclein on stress-induced mitochondrial morphological remodelling. Journal of Biological Chemistry M114:634063

    Google Scholar 

  • Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C (2010) Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Human Mutation 31:763–780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker WD Jr, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson’s disease frontal cortex. Brain Research 1189:215–218

    CAS  PubMed  Google Scholar 

  • Patil SP, Jain PD, Sancheti JS, Ghumatkar PJ, Tambe R et al (2014) Neuroprotective and neurotrophic effects of apigenin and luteolin in MPTP induced parkinsonism in mice. Neuropharmacology 86:192–202

    CAS  PubMed  Google Scholar 

  • Peng H, Cheng F, Huang Y, Chen C, Tsai T (1998) Determination of naringenin and its glucuronide conjugate in rat plasma and brain tissue by high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications 714:369–374

    CAS  PubMed  Google Scholar 

  • Pilleri M, Antonini A (2015) Therapeutic strategies to prevent and manage dyskinesias in Parkinson’s disease. Expert Opinion on Drug Safety 14:281–294

    CAS  PubMed  Google Scholar 

  • Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G et al (2014) Dynamic changes in pro-and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease. Neurobiology of Disease 71:280–291

    CAS  PubMed  Google Scholar 

  • Pizzi M, Boroni F, Bianchetti A, Moraitis C, Sarnico I et al (2002) Expression of functional NR1/NR2B-type NMDA receptors in neuronally differentiated SK-N-SH human cell line. European Journal of Neuroscience 16:2342–2350

    Google Scholar 

  • Pizzi M, Sarnico I, Boroni F, Benetti A, Benarese M et al. (2005) Inhibition of IκBα phosphorylation prevents glutamate-induced NF-κB activation and neuronal cell death. In: Re-engineering of the damaged brain and spinal cord. Springer, pp 59–63

  • Pizzi M, Sarnico I, Lanzillotta A, Battistin L, Spano P (2009) Post-ischemic brain damage: NF-κB dimer heterogeneity as a molecular determinant of neuron vulnerability. The FEBS Journal 276:27–35

    CAS  PubMed  Google Scholar 

  • Poewe W (2008) Non-motor symptoms in Parkinson’s disease. Eur J Neurol 15:14–20

    PubMed  Google Scholar 

  • Pomerantz JL, Baltimore D (2002) Two pathways to NF-κB. Molecular Cell 10:693–695

    CAS  PubMed  Google Scholar 

  • Qian Y, Cao L, Guan T, Chen L, Xin H, Li Y, Zheng R, Yu D (2015) Protection by genistein on cortical neurons against oxidative stress injury via inhibition of NF-kappaB, and ERK signaling pathway. JNK Pharmaceutical Biology 53:1124–1132

    CAS  PubMed  Google Scholar 

  • Rabie MA, El Fattah MAA, Nassar NN, El-Abhar HS, Abdallah DM (2018) Angiotensin 1-7 ameliorates 6-hydroxydopamine lesions in hemiparkinsonian rats through activation of MAS receptor/PI3K/Akt/BDNF pathway and inhibition of angiotensin II type-1 receptor/NF-κB axis. Biochem Pharmacol 151:126–134

    CAS  PubMed  Google Scholar 

  • Rai SN, Dilnashin H, Birla H, Singh SS, Zahra W, Rathore AS, Singh BK, Singh SP (2019a) The role of PI3K/Akt and ERK in neurodegenerative disorders. Neurotox Res 35:775–795

    CAS  PubMed  Google Scholar 

  • Rai SN, Zahra W, Singh SS, Birla H, Keswani C et al. (2019b) Anti-inflammatory activity of ursolic acid in MPTP-induced parkinsonian mouse model. Neurotox Res 1–11

  • Rajeswari A, Sabesan M (2008) Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 16:96–99

    CAS  PubMed  Google Scholar 

  • Régnier CH, Song HY, Gao X, Goeddel DV, Cao Z et al (1997) Identification and characterization of an IκB kinase. Cell 90:373–383

    PubMed  Google Scholar 

  • Ren Z, Wang L, Cui J, Huoc Z, Xue J et al (2013) Resveratrol inhibits NF-κB signaling through suppression of p65 and IB kinase activities. Die Pharmazie-An International Journal of Pharmaceutical Sciences 68:689–694

    CAS  Google Scholar 

  • Renaud J, Martinoli M-G (2019) Considerations for the use of polyphenols as therapies in neurodegenerative diseases. International Journal of Molecular Sciences 20:1883

    CAS  PubMed Central  Google Scholar 

  • Renaud J, Bournival J, Zottig X, Martinoli M-G (2014) Resveratrol protects DAergic PC12 cells from high glucose-induced oxidative stress and apoptosis: effect on p53 and GRP75 localization. Neurotoxicity Research 25:110–123

    CAS  PubMed  Google Scholar 

  • Rodriguez M, Hirsch E, Farrer M, Schapira A, Halliday G (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653661

    Google Scholar 

  • Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R et al (2009) Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. The Lancet Neurology 8:1128–1139

    CAS  PubMed  Google Scholar 

  • Ruiz PA, Haller D (2006) Functional diversity of flavonoids in the inhibition of the proinflammatory NF-κB, IRF, and Akt signaling pathways in murine intestinal epithelial cells. The Journal of Nutrition 136:664–671

    CAS  PubMed  Google Scholar 

  • Russo I, Bubacco L, Greggio E (2014) LRRK2 and neuroinflammation: partners in crime in Parkinson’s disease? J Neuroinflammation 11:52

    PubMed  PubMed Central  Google Scholar 

  • Sacino AN, Brooks M, Thomas MA, McKinney AB, Lee S et al. (2014) Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc Natl Acad Sci U S A 201321785

  • Saijo K, Winner B, Carson CT, Collier JG, Boyer L et al (2009) A Nurr1/CoREST transrepression pathway attenuates neurotoxic inflammation in activated microglia and astrocytes. Cell 137:47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarnico I, Lanzillotta A, Benarese M, Alghisi M, Baiguera C et al (2009a) NF-kappaB dimers in the regulation of neuronal survival. International Review of Neurobiology 85:351–362

    CAS  PubMed  Google Scholar 

  • Sarnico I, Lanzillotta A, Boroni F, Benarese M, Alghisi M, Schwaninger M, Inta I, Battistin L, Spano P, Pizzi M (2009b) NF-κB p50/RelA and c-Rel-containing dimers: opposite regulators of neuron vulnerability to ischaemia. J Neurochem 108:475–485

    CAS  PubMed  Google Scholar 

  • Schaffer S, Halliwell B (2012) Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes & Nutrition 7:99–109

    CAS  Google Scholar 

  • Schapira AH (2008) Mitochondrial dysfunction in neurodegenerative diseases. Neurochem Res 33:2502–2509

    CAS  PubMed  Google Scholar 

  • Schapira A, Cooper J, Dexter D, Clark J, Jenner P et al (1990) Mitochondrial complex I deficiency in Parkinson’s disease. Journal of Neurochemistry 54:823–827

    CAS  PubMed  Google Scholar 

  • Schmidt-Ullrich R, Mémet S, Lilienbaum A, Feuillard J, Raphaël M et al (1996) NF-kappaB activity in transgenic mice: developmental regulation and tissue specificity. Development 122:2117–2128

    CAS  PubMed  Google Scholar 

  • Schmitz ML, Baeuerle PA (1991) The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. EMBO J 10:3805–3817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T et al (1999) NF-κB is activated and promotes cell death in focal cerebral ischemia. Nature Medicine 5:554

    CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L et al (2014) Protective and toxic roles of dopamine in Parkinson’s disease. Journal of Neurochemistry 129:898–915

    CAS  PubMed  Google Scholar 

  • Sen R, Baltimore D (1986a) Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47:921–928

    CAS  PubMed  Google Scholar 

  • Sen R, Baltimore D (1986b) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716

    CAS  PubMed  Google Scholar 

  • Shen W, Qi R, Zhang J, Wang Z, Wang H et al (2012) Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons. Brain Research Bulletin 88:487–494

    CAS  PubMed  Google Scholar 

  • Singh SS, Rai SN, Birla H, Zahra W, Kumar G et al. (2018) Effect of chlorogenic acid supplementation in MPTP-intoxicated mouse. Front Pharmacol 9

  • Sivandzade F, Prasad S, Bhalerao A, Cucullo L (2018) NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol

  • Song J, Cheon SY, Jung W, Lee WT, Lee JE (2014) Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia. International Journal of Molecular Sciences 15:15512–15529

    PubMed  PubMed Central  Google Scholar 

  • Song GJ, Rahman MH, Jha M, Gupta D, Kim J et al (2019) A Bcr-Abl inhibitor GNF-2 Attenuates inflammatory activation of glia and chronic pain. Frontiers in Pharmacology 10:543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stott SR, Barker RA (2014) Time course of dopamine neuron loss and glial response in the 6-OHDA striatal mouse model of P arkinson’s disease. Eur J Neurosci 39:1042–1056

    PubMed  Google Scholar 

  • Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H et al (1998) Wide distribution of [3H](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 19:1771–1776

    CAS  PubMed  Google Scholar 

  • Sulzer D, Cassidy C, Horga G, Kang UJ, Fahn S et al (2018) Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson’s disease. NPJ Parkinson’s Disease 4:11

    PubMed  PubMed Central  Google Scholar 

  • Sun S-C (2011) Non-canonical NF-κB signaling pathway. Cell Research 21:71

    CAS  PubMed  Google Scholar 

  • Suresh D, Srinivasan K (2010) Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian Journal of Medical Research 131

  • Tai Y, Qiu Y, Bao Z (2018) Magnesium lithospermate B suppresses lipopolysaccharide-induced neuroinflammation in BV2 microglial cells and attenuates neurodegeneration in lipopolysaccharide-injected mice. Journal of Molecular Neuroscience 64:80–92

    CAS  PubMed  Google Scholar 

  • Tak PP, Firestein GS (2001) NF-κB: a key role in inflammatory diseases. The Journal of Clinical Investigation 107:7–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tak PP, Gerlag DM, Aupperle KR, Van De Geest DA, Overbeek M et al (2001) Inhibitor of nuclear factor κB kinase β is a key regulator of synovial inflammation. Arthritis & Rheumatism 44:1897–1907

    CAS  Google Scholar 

  • Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiology of Disease 37:510–518

    CAS  PubMed  Google Scholar 

  • Taylor D, Krige D, Barnes P, Kemp G, Carroll M, Mann VM, Cooper JM, Marsden CD, Schapira AH (1994) A 31P magnetic resonance spectroscopy study of mitochondrial function in skeletal muscle of patients with Parkinson’s disease. J Neurol Sci 125:77–81

    CAS  PubMed  Google Scholar 

  • Thanos D, Maniatis T (1995) NF-κB: a lesson in family values. Cell 80:529–532

    CAS  PubMed  Google Scholar 

  • Thirumangalakudi L, Yin L, Rao HV, Grammas P (2007) IL-8 induces expression of matrix metalloproteinases, cell cycle and pro-apoptotic proteins, and cell death in cultured neurons. Journal of Alzheimer’s Disease 11:305–311

    CAS  PubMed  Google Scholar 

  • Tripanichkul W, Jaroensuppaperch E (2013) Ameliorating effects of curcumin on 6-OHDA-induced dopaminergic denervation, glial response, and SOD1 reduction in the striatum of hemiparkinsonian mice. Eur Rev Med Pharmacol Sci 17:1360–1368

    CAS  PubMed  Google Scholar 

  • Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsoulfas G, Geller DA (2001) NF-κB in transplantation: friend or foe? Transplant Infectious Disease: Basic Science 3:212–219

    CAS  Google Scholar 

  • Vallabhapurapu S, Karin M (2009) Regulation and function of NF-κB transcription factors in the immune system. Annual Review of Immunology 27:693–733

    CAS  PubMed  Google Scholar 

  • van der Merwe C, Jalali Sefid Dashti Z, Christoffels A, Loos B, Bardien S (2015) Evidence for a common biological pathway linking three Parkinson’s disease-causing genes: parkin, PINK1 and DJ-1. European Journal of Neuroscience 41:1113–1125

    Google Scholar 

  • Vauzour D (2012) Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxidative Med Cellular Longevity 2012

  • Venkateshappa C, Harish G, Mythri RB, Mahadevan A, Bharath MS et al (2012) Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease. Neurochemical Research 37:358–369

    CAS  PubMed  Google Scholar 

  • Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S (1995) Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes & Development 9:2723–2735

    CAS  Google Scholar 

  • Vitale N, Kisslinger A, Paladino S, Procaccini C, Matarese G et al (2013) Resveratrol couples apoptosis with autophagy in UVB-irradiated HaCaT cells. PLoS One 8:e80728

    PubMed  PubMed Central  Google Scholar 

  • Waak J, Weber SS, Waldenmaier A, Görner K, Alunni-Fabbroni M et al (2009) Regulation of astrocyte inflammatory responses by the Parkinson’s disease-associated gene DJ-1. The FASEB Journal 23:2478–2489

    CAS  PubMed  Google Scholar 

  • Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H (2000) NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathologica 99:14–20

    CAS  PubMed  Google Scholar 

  • Wang J-Y, Xu L-Z (2009) The research of the effect of curcumin on dopaminergic neurons in mouse model of parkinson's disease. Journal of Taishan Medical College 8:001

    Google Scholar 

  • Wang Q, Sun AY, Simonyi A, Jensen MD, Shelat PB et al (2005) Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. Journal of Neuroscience Research 82:138–148

    CAS  PubMed  Google Scholar 

  • Wang Y-H, Yu H-T, Pu X-P, Du G-H (2013) Baicalein prevents 6-hydroxydopamine-induced mitochondrial dysfunction in SH-SY5Y cells via inhibition of mitochondrial oxidation and up-regulation of DJ-1 protein expression. Molecules 18:14726–14738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X-S, Zhang Z-R, Zhang M-M, Sun M-X, Wang W-W et al (2017) Neuroprotective properties of curcumin in toxin-base animal models of Parkinson’s disease: a systematic experiment literatures review. BMC Complementary and Alternative Medicine 17:412

    PubMed  PubMed Central  Google Scholar 

  • Whiteside ST, Epinat JC, Rice NR, Israël A (1997) I kappa B epsilon, a novel member of the IκB family, controls RelA and cRel NF-κB activity. EMBO J 16:1413–1426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams CM, El Mohsen MA, Vauzour D, Rendeiro C, Butler LT et al (2008) Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radical Biology and Medicine 45:295–305

    CAS  PubMed  Google Scholar 

  • Wilms H, Rosenstiel P, Sievers J, Deuschl GN, Zecca L et al (2003) Activation of microglia by human neuromelanin is NF-κB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. The FASEB Journal 17:500–502

    CAS  PubMed  Google Scholar 

  • Xu W, Zheng D, Liu Y, Li J, Yang L et al (2017) Glaucocalyxin B alleviates lipopolysaccharide-induced Parkinson’s disease by inhibiting TLR/NF-κB and activating Nrf2/HO-1 pathway. Cellular Physiology and Biochemistry 44:2091–2104

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Verma UN, Prajapati S, Kwak Y-T, Gaynor RB (2003) Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423:655

    CAS  PubMed  Google Scholar 

  • Yang Y-j, Hu L, Xia Y-P, Jiang C-Y, Miao C et al (2016) Resveratrol suppresses glial activation and alleviates trigeminal neuralgia via activation of AMPK. J Neuroinflammation 13:84

    PubMed  PubMed Central  Google Scholar 

  • Yang X, Xu S, Qian Y, Xiao Q (2017) Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury. Brain Behav Immun 64:162–172

    CAS  PubMed  Google Scholar 

  • Yang J, Jia M, Zhang X, Wang P (2019) Calycosin attenuates MPTP-induced Parkinson’s disease by suppressing the activation of TLR/NF-κB and MAPK pathways. Phytotherapy Research 33:309–318

    CAS  PubMed  Google Scholar 

  • Yoshino H, Nakagawa-Hattori Y, Kondo T, Mizuno Y (1992) Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. Journal of Neural Transmission-Parkinson’s Disease and Dementia Section 4:27–34

    CAS  PubMed  Google Scholar 

  • Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ et al (2003) Interaction between flavonoids and the blood–brain barrier: in vitro studies. Journal of Neurochemistry 85:180–192

    CAS  PubMed  Google Scholar 

  • Yu S, Zheng W, Xin N, Chi Z-H, Wang N-Q et al (2010) Curcumin prevents dopaminergic neuronal death through inhibition of the c-Jun N-terminal kinase pathway. Rejuvenation Research 13:55–64

    CAS  PubMed  Google Scholar 

  • Yu Y, Shen Q, Lai Y, Ou X, Lin D et al (2018) Anti-inflammatory effects of curcumin in microglial cells. Frontiers in Pharmacology 9:386

    PubMed  PubMed Central  Google Scholar 

  • Zaitone SA, Ahmed E, Elsherbiny NM, Mehanna ET, El-Kherbetawy MK et al (2019) Caffeic acid improves locomotor activity and lessens inflammatory burden in a mouse model of rotenone-induced nigral neurodegeneration: relevance to Parkinson’s disease therapy. Pharmacological Reports 71:32–41

    CAS  PubMed  Google Scholar 

  • Zecca L, Guadagni L, Bareggi S (1982) Determination of sodium flavodate in body fluids by high-performance liquid chromatography: application to clinical pharmacokinetic studies. Journal of Chromatography B: Biomedical Sciences and Applications 230:168–174

    CAS  Google Scholar 

  • Zecca L, Wilms H, Geick S, Claasen J-H, Brandenburg L-O et al (2008) Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathologica 116:47–55

    CAS  PubMed  Google Scholar 

  • Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Current Opinion in Neurobiology 20:588–594

    CAS  PubMed  Google Scholar 

  • Zhang F-X, Xu R-S (2018) Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinson’s disease and cell culture via inactivating TLR4/NF-κB pathway. Biomedicine & Pharmacotherapy 97:1011–1019

    CAS  Google Scholar 

  • Zhang W, Phillips K, Wielgus AR, Liu J, Albertini A et al (2011) Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotoxicity Research 19:63–72

    PubMed  Google Scholar 

  • Zhang F, Zhou H, Wilson BC, Shi J-S, Hong J-S et al (2012a) Fluoxetine protects neurons against microglial activation-mediated neurotoxicity. Parkinsonism & Related Disorders 18:S213–S217

    Google Scholar 

  • Zhang Z, Cui W, Li G, Yuan S, Xu D et al (2012b) Baicalein protects against 6-OHDA-induced neurotoxicity through activation of Keap1/Nrf2/HO-1 and involving PKCα and PI3K/AKT signaling pathways. Journal of Agricultural and Food Chemistry 60:8171–8182

    CAS  PubMed  Google Scholar 

  • Zhang G, Li J, Purkayastha S, Tang Y, Zhang H et al (2013a) Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497:211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Chen J, Yang J, Xu C-W, Pu P et al (2013b) Resveratrol attenuates oxidative stress induced by balloon injury in the rat carotid artery through actions on the ERK1/2 and NF-kappa B pathway. Cellular Physiology and Biochemistry 31:230–241

    CAS  PubMed  Google Scholar 

  • Zhang H, Hilton MJ, Anolik JH, Welle SL, Zhao C et al (2014) NOTCH inhibits osteoblast formation in inflammatory arthritis via noncanonical NF-κB. The Journal of Clinical Investigation 124:3200–3214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yang Y, Du L, Zhang W, Du G (2017) “Baicalein exerts anti-neuroinflammatory effects to protect against rotenone-induced brain injury in rats.” Int Immunopharmacol 50:38–47

    CAS  PubMed  Google Scholar 

  • Zhou Y, Zhang T, Wang X, Wei X, Chen Y, Guo L, Zhang J, Wang C (2015) Curcumin modulates macrophage polarization through the inhibition of the toll-like receptor 4 expression and its signaling pathways. Cell Physiol Biochem 36:631–641

    CAS  PubMed  Google Scholar 

  • Zhou J, Deng Y, Li F, Yin C, Shi J et al (2019) Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats. Biomedicine & Pharmacotherapy 111:315–324

    CAS  Google Scholar 

  • Zucca FA, Basso E, Cupaioli FA, Ferrari E, Sulzer D et al (2014) Neuromelanin of the human substantia nigra: an update. Neurotoxicity Research 25:13–23

    CAS  PubMed  Google Scholar 

  • Zuo L, Motherwell MS (2013) The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson’s disease. Gene 532:18–23

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SSS, SNR, HB, WZ, and ASR are sincerely thankful to ICMR, DBT, and BHU, India, for their respective fellowship. The present study was not supported by any funding agencies.

Availability of Data and Material

NA

Author information

Authors and Affiliations

Authors

Contributions

SSS planed the work and drafted the manuscript; SNR, WZ, and ASR helped in the manuscript preparation; HB designed and has drawn the figures and pathway; and SPS guided throughout the manuscript.

Corresponding author

Correspondence to Surya Pratap Singh.

Ethics declarations

Ethics Approval and Consent to Participate

NA

Consent for Publication

NA

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.S., Rai, S.N., Birla, H. et al. NF-κB-Mediated Neuroinflammation in Parkinson’s Disease and Potential Therapeutic Effect of Polyphenols. Neurotox Res 37, 491–507 (2020). https://doi.org/10.1007/s12640-019-00147-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-00147-2

Keywords

Navigation