Skip to main content
Log in

EPS-Producing Microorganisms from Louisiana’s Crusher Juice and the Effect of Processing Conditions on EPS Production

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

During microbial deterioration of sugarcane, a variety of extracellular polysaccharides (EPS, e.g., dextran, fructans) and other impurities (e.g., organic acids, sugar alcohols, alcohols) are produced. The microbial-derived EPS dextran (a polymer of glucose) has generally been considered the main problem in sugarcane processing, with its main production source being attributed to the bacterium Leuconostoc mesenteroides. Technical problems associated with the presence of dextran at the sugar factory can affect every step of sugar processing resulting in high viscosities, reduced efficiencies, elongation of sugar crystals, and the loss of sucrose to molasses. In recent years, fructans (a polymer of fructose) concentrations have been increasingly reported in both cane juice and molasses at Louisiana sugar factories. With the limited information that exists on the microbial origin of fructans at the sugar factories and its possible impact on Louisiana sugarcane processing, this research study aimed at identifying the microbial populations present in high numbers in the crusher juice or first extraction juice, and determining the effect of processing conditions on their ability to produce EPS. Our findings indicate that Lactobacillus, Lactococcus, Leuconostoc, Pantoea, Pseudomonas, and Saccharomyces were the microbial genera present in high cell numbers and that all isolates were capable of producing dextran and/or fructans. Leuconostoc had the most diverse number of species. A single isolate of L. suionicum A14 was identified and produced only fructans from sucrose. This is the first study to report on a fructan-only producing Leuconostoc isolate from sugarcane. EPS production was affected by temperature, sucrose concentrations, and medium pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abou-taleb, K.A., M.O. Abdel-Monem, M.H. Yassin, and A.A. Draz. 2015. Production, purification and characterization of levan polymer from Bacillus lentus V8 Strain. British Microbiology Research Journal 5 (1): 22–32. https://doi.org/10.9734/BMRJ/2015/12448.

    Article  Google Scholar 

  • Ahmed, Z., and A. Ahmad. 2017. Handbook of Food Bioengineering, Microbial Production of Food Ingredients and Additives. Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-0-12-811520-6.00008-8.

    Book  Google Scholar 

  • Cirrincione, S., Y. Breuer, and E. Mangiapane. 2018. “Ropy” phenotype, exopolysaccharides and metabolism: Study on food isolated potential probiotics LAB. Microbiology Research 214: 137–145. https://doi.org/10.1016/j.micres.2018.07.004.

    Article  CAS  Google Scholar 

  • Díaz-Montes, E. 2021. Dextran: Sources, structures, and properties. Polysaccharides 2: 554–565. https://doi.org/10.3390/polysaccharides2030033.

    Article  CAS  Google Scholar 

  • Ernandes, F.M., and C.H. Garcia-Cruz. 2011. Nutritional requirements of Zymomonas mobilis CCT 4494 for levan production. Brazilian Archives of Biology and Technology 54 (3): 589–600. https://doi.org/10.1590/S1516-89132011000300021.

    Article  CAS  Google Scholar 

  • Esmaeilnejad-Moghadam, B., R.R. Mokarram, M.A. Hejazi, M.S. Khiyabani, and F. Keivaninahr. 2019. Low molecular weight dextran production by Leuconostoc mesenteroides strains: Optimization of a new culture medium and the rheological assessments. Bioactive Carbohydrates and Dietary Fibre 18 (2): 100181. https://doi.org/10.1016/j.bcdf.2019.100181.

    Article  CAS  Google Scholar 

  • Farrell, J., and A. Rose. 1967. Temperature effects on microorganisms. Annual Reviews in Microbiology 21: 101–120. https://doi.org/10.1146/annurev.mi.21.100167.000533.

    Article  CAS  Google Scholar 

  • Gientka, I., S. Błażejak, L. Stasiak-Różańska, and A. Chlebowska-Śmigiel. 2015 Exopolysaccharides from yeast: insight into optimal conditions for biosynthesis, chemical composition and functional properties - review. Acta Scientiarum Polonorum, Technologia Alimentaria 14(4):283–292. https://doi.org/10.17306/J.AFS.2015.4.29. PMID: 28068035.

  • González-Garcinuño, A., A. Tabernero, J.M. Sánchez-Álvarez, M.A. Galán, and E.M. Del Valle 2017. Effect of bacteria type and sucrose concentration on levan yield and its molecular weight. Microbial Cell Factories 16 (1): 91. https://doi.org/10.1186/s12934-017-0703-z.

    Article  CAS  Google Scholar 

  • Han, J., H. Feng, X. Wang, Z. Liu, and Z. Wu. 2021. Levan from Leuconostoc citreum BD1707: Production optimization and changes in molecular weight distribution during cultivation. BMC Biotechnology 21: 14. https://doi.org/10.1186/s12896-021-00673-y.

    Article  CAS  Google Scholar 

  • Hector, S., K. Willard, R. Bauer, I. Mulako, E. Slabbert, J. Kossmann, and G. George. 2015. Diverse EPS producing bacteria isolated from milled sugarcane: Implications from cane spoilage and sucrose yield. PLoS ONE 10 (12): e0145487. https://doi.org/10.1371/journal.pone.0145487.

    Article  CAS  Google Scholar 

  • Heredia-Ponce, Z., J. Gutiérrez-Barranquero, G. Purtschert-Montenegro, F. Cazorla, L. Eberl, and A. de Vicente. 2020. Biological role of EPS from Pseudomonas syringae pv. syringae UMAF0158 extracellular matrix, focusing on a Psl-like polysaccharide. NPJ Biofilms Microbiomes 6 (37). https://doi.org/10.1038/s41522-020-00148-6.

  • Jensen, S., M. Diemer, and M. Lundmark. 2016. Levanase from Bacillus subtilis hydrolyses β-2,6 fructosyl bonds in bacterial levans and in grass fructans. International Journal of Biological Macromolecules 85: 514–521. https://doi.org/10.1016/j.ijbiomac.2016.01.008.

    Article  CAS  Google Scholar 

  • Jimenez, E. 2005. The dextranase along sugar-making industry. Biotecnologia Aplicada 22: 20–27.

  • Liang, D., J. Yan, L. Zeng, S. Wang, Y. Li, E. Ni, and L. Yu. 2011. Generation of anti-dextran monoclonal antibody and development of immunonephelometry for quantitative detection of dextran. International Sugar Journal 113 (1353): 654–659.

    CAS  Google Scholar 

  • Liu, L., J. Xu, R. Du, W. Ping, J. Ge, and D. Zhao. 2021. The response surface optimization of exopolysaccharides produced by S. cerevisiae Y3 and its partial characterization. Preparative Biochemistry and Biotechnology. https://doi.org/10.1080/10826068.2021.1972428.

  • Lule, V., R. Singh, P. Behare, and S. Tomar. 2015. Comparison of polysaccharides production by indigenous Leuconostoc mesenteroides strains in whey medium. Asian Journal of Dairy and Food Research 34: 8–12. https://doi.org/10.5958/0976-0563.2015.00002.0.

    Article  Google Scholar 

  • Malang, S.K., N.H. Maina, C. Schwab, M. Tenkanen, and C. Lacroix. 2015. Characterization of EPS and ropy capsular polysaccharides formation by Weissella. Food Microbiology 46: 418–427. https://doi.org/10.1016/j.fm.2014.08.022.

    Article  CAS  Google Scholar 

  • Mensink, M., H.W. Frijlink, K. Maarschalk, and W. Hinrichs. 2015. Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications. Carbohydrate Polymers 134: 418–428. https://doi.org/10.1016/j.carbpol.2015.08.022.

    Article  CAS  Google Scholar 

  • Misra, V., S. Solomon, A.K. Mall, C.P. Prajapati, and M. Israil Ansari. 2020. Impact of chemical treatments on Leuconostoc bacteria from harvested stored/stale cane. Biotechnology Reports 27: e00501. https://doi.org/10.1016/j.btre.2020.e00501.

    Article  Google Scholar 

  • Munkel, F., J. Bechtner, V. Eckel, A. Fischer, F. Herbi, F. Jakob, and D. Wefers. 2019. Detailed structural characterization of glucans produced by glucansucrases from Leuconostoc citreum TWW 2.1194. Journal of Agricultural and Food Chemistry 67: 6856–6866. https://doi.org/10.1021/acs.jafc.9b01822.

    Article  CAS  Google Scholar 

  • Naessens, M., A. Cerdobbel, W. Soetaert, and E. Vandamme. 2005. Leuconostoc dextransucrase and dextran: Production, properties, and applications. Journal of Chemical Technology and Biotechnology 80: 845–860. https://doi.org/10.1002/jctb.1322.

    Article  CAS  Google Scholar 

  • Nel, S., S. Davis, A. Endo, and L. Dicks. 2019. Microbial diversity profiling of polysaccharide-producing bacteria isolated from a South African sugarcane processing factory. Current Microbiology 76: 527–535. https://doi.org/10.1007/s00284-018-01625-0.

    Article  CAS  Google Scholar 

  • Ortiz-Soto, M.E., V. Olivares-Illana, and A. López-Munguía. 2004. Biochemical properties of inulosucrase from Leuconostoc citreum CW28 used for inulin. Synthesis, Biocatalysis and Biotransformation 22: 275–281. https://doi.org/10.1080/10242420400014251.

    Article  CAS  Google Scholar 

  • Rani, R.S., C. Ramachandran, and A. Usha. 2016. Characterization of bacterial and yeast populations in fermentation of finger millet (Eleusine coracana). Research Journal of Biotechnology 11 (12): 52–57. https://doi.org/10.1007/s13197-017-2621-9.

    Article  CAS  Google Scholar 

  • Rein, P. 2007. Cane Sugar Engineering. Berlin, Germany: Bartens.

  • Salman, J.A.S., H. Ali Ajah, and A. Khudair. 2019. Analysis and characterization of purified levan from Leuconostoc mesenteroides ssp. cremoris and its effects on Candida albicans virulence factors. Jordan Journal of Biological Sciences 12:243–249.

  • Santos, M., J.A. Teixeira, and A. Rodrigues. 2000. Production of dextransucrase, dextran and fructose from sucrose using Leuconostoc mesenteroides NRRL-B512 (f). Biochemical Engineering Journal 4 (3): 177–188. https://doi.org/10.1016/s1369-703x(99)00047-9.

    Article  CAS  Google Scholar 

  • Sarwat, F., S.A. Ul Qader, A. Aman, and N. Ahmed. 2008. Production and characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. International Journal of Biological Sciences 4 (6): 379–386. https://doi.org/10.7150/ijbs.4.379.

    Article  CAS  Google Scholar 

  • Senthil, K.V., and P. Gunasekaran. 2005. Influence of fermentation conditions on levan production by Zymomonas mobilis CT2. Indian Journal of Biotechnology 4(4):491–496.

  • Shukla, A., K. Mehata, J. Parmar, J. Pandya, and M. Saraf. 2019. Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell. European Polymer Journal 119: 298–310. https://doi.org/10.1016/j.eurpolymj.2019.07.044.

    Article  CAS  Google Scholar 

  • Srikanth, R., C. Reddy, G. Siddartha, M. Ramajah, and K. Uppuluri. 2015. Review on production, characterization and applications of microbial levan. Carbohydrate Polymers 120: 102–114. https://doi.org/10.1016/j.carbpol.2014.12.003.

    Article  CAS  Google Scholar 

  • Taylan, O., M.T. Yilmaz, and E. Dertli. 2019. Partial Characterization of a levan-type EPS produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. International Journal Biological Macromolecules 136: 436–444. https://doi.org/10.1016/j.ijbiomac.2019.06.078.

    Article  CAS  Google Scholar 

  • Torres-Rodriguez, I., M.E. Rodriguez-Alegria, A. Miranda-Molina, M. Giles-Gomez, A. Lopez-Munguia, F. Bolivar, and A. Escalante. 2014. Screening and characterization of extracellular polysaccharides produced by Leuconostoc kimchi isolated from traditional fermented pulque beverage. Springerplus 3: 583. https://doi.org/10.1186/2193-1801-3-583.

    Article  CAS  Google Scholar 

  • Triplett, A., G. Eggleston, P. Gaston, and D. Stewart. 2021. Fructans have been underestimated in the Louisiana sugarcane industry. International Sugar Journal 123 (147): 546–554.

    Google Scholar 

  • Vasileva, T., I. Iliev, M. Amari, V. Bivolarski, M. Bounaix, H. Robert, S. Morel, P. Rabier, I. Ivanova, B. Gabriel, C. Fontagné-Faucher, and V. Gabriel. 2012. Characterization of glycosyltransferase activity of wild-type Leuconostoc mesenteroides strains from Bulgarian fermented vegetables. Applied Biochemistry and Biotechnology 168 (3): 718–730. https://doi.org/10.1007/s12010-012-9812-7.

    Article  CAS  Google Scholar 

  • Walterson, A., and J. Stavrinides. 2015. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiology Reviews 39(6): 968-984.

  • Wang, Y., R. Du, X. Qiao, B. Zhao, Z. Zhou, and Y. Han. 2020. Optimization and characterization of exopolysaccharides with a highly branched structure extracted from Leuconostoc citreum B-2. International Journal of Biological Macromolecules 142: 73–84. https://doi.org/10.1016/j.ijbiomac.2019.09.071

    Article  CAS  Google Scholar 

  • Zikmanis, P., K. Brants, S. Kolesovs, and P. Semjonovs. 2020. Extracellular polysaccharides produced by the bacteria of the Leuconostoc genus. World Journal of Microbiology and Biotechnology 36: 161. https://doi.org/10.1007/s11274-020-02937-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the American Sugar Cane League for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna M. Aita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aita, G.M., Moon, Y.H. EPS-Producing Microorganisms from Louisiana’s Crusher Juice and the Effect of Processing Conditions on EPS Production. Sugar Tech 25, 482–490 (2023). https://doi.org/10.1007/s12355-022-01235-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-022-01235-y

Keywords

Navigation