Skip to main content
Log in

Biodegradation of plastics: mining of plastic-degrading microorganisms and enzymes using metagenomics approaches

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Plastic pollution exacerbated by the excessive use of synthetic plastics and its recalcitrance has been recognized among the most pressing global threats. Microbial degradation of plastics has gained attention as a possible eco-friendly countermeasure, as several studies have shown microbial metabolic capabilities as potential degraders of various synthetic plastics. However, still defined biochemical mechanisms of biodegradation for the most plastics remain elusive, because the widely used culture-dependent approach can access only a very limited amount of the metabolic potential in each microbiome. A culture-independent approach, including metagenomics, is becoming increasingly important in the mining of novel plastic-degrading enzymes, considering its more expanded coverage on the microbial metabolism in microbiomes. Here, we described the advantages and drawbacks associated with four different metagenomics approaches (microbial community analysis, functional metagenomics, targeted gene sequencing, and whole metagenome sequencing) for the mining of plastic-degrading microorganisms and enzymes from the plastisphere. Among these approaches, whole metagenome sequencing has been recognized among the most powerful tools that allow researchers access to the entire metabolic potential of a microbiome. Accordingly, we suggest strategies that will help to identify plastisphere-enriched sequences as de novo plastic-degrading enzymes using the whole metagenome sequencing approach. We anticipate that new strategies for metagenomics approaches will continue to be developed and facilitate to identify novel plastic-degrading microorganisms and enzymes from microbiomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaçin, I., Ersoy, S., Doluca, O., and Güngörmüsler, M. 2022. Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics. Microbiol. Res., 264, 127154.

    Article  PubMed  Google Scholar 

  • Alves, L.F., Westmann, C.A., Lovate, G.L., de Siqueira, G.M.V., Borelli, T.C., and Guazzaroni, M.E. 2018. Metagenomic approaches for understanding new concepts in microbial science. Int. J. Genomics, 2018, 2312987.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amaral-Zettler, L.A., Zettler, E.R., and Mincer, T.J. 2020. Ecology of the plastisphere. Nat. Rev. Microbiol., 18, 139–151.

    Article  CAS  PubMed  Google Scholar 

  • Bertrand, D., Shaw, J., Kalathiyappan, M., Ng, A.H.Q., Kumar, M.S., Li, C., Dvornicic, M., Soldo, J.P., Koh, J.Y., Tong, C., et al. 2019. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat. Biotechnol., 37, 937–944.

    Article  CAS  PubMed  Google Scholar 

  • Bryant, J.A., Clemente, T.M., Viviani, D.A., Fong, A.A., Thomas, K.A., Kemp, P., Karl, D.M., White, A.E., and DeLong, E.F. 2016. Diversity and activity of communities inhabiting plastic debris in the north pacific gyre. mSystems, 1, e00024–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchholz, P.C.F., Feuerriegel, G., Zhang, H., Perez-Garcia, P., Nover, L.L., Chow, J., Streit, W.R., and Pleiss, J. 2022. Plastics degradation by hydrolytic enzymes: the plastics-active enzymes database-PAZy. Proteins, 90, 1443–1456.

    Article  CAS  PubMed  Google Scholar 

  • Carr, C.M., Clarke, D.J., and Dobson, A.D.W. 2020. Microbial polyethylene terephthalate hydrolases: current and future perspectives. Front. Microbiol., 11, 571265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa, O.Y.A., de Hollander, M., Pijl, A., Liu, B., and Kuramae, E.E. 2020. Cultivation-independent and cultivation-dependent metagenomes reveal genetic and enzymatic potential of microbial community involved in the degradation of a complex microbial polymer. Microbiome, 8, 76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danso, D., Chow, J., and Streit, W.R. 2019. Plastics: environmental and biotechnological perspectives on microbial degradation. Appl. Environ. Microbiol., 85, e01095–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danso, D., Schmeisser, C., Chow, J., Zimmermann, W., Wei, R., Leggewie, C., Li, X., Hazen, T., and Streit, W.R. 2018. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl. Environ. Microbiol., 84, e02773–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza Machado, A.A., Kloas, W., Zarfl, C., Hempel, S., and Rillig, M.C. 2018. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol., 24, 1405–1416.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gambarini, V., Pantos, O., Kingsbury, J.M., Weaver, L., Handley, K.M., and Lear, G. 2021. Phylogenetic distribution of plasticdegrading microorganisms. mSystems, 6, e01112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambarini, V., Pantos, O., Kingsbury, J.M., Weaver, L., Handley, K.M., and Lear, G. 2022. PlasticDB: a database of microorganisms and proteins linked to plastic biodegradation. Database, 2022, baac008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaytán, I., Sánchez-Reyes, A., Burelo, M., Vargas-Suárez, M., Liachko, I., Press, M., Sullivan, S., Cruz-Gómez, M.J., and Loza-Tavera, H. 2020. Degradation of recalcitrant polyurethane and xenobiotic additives by a selected landfill microbial community and its biodegradative potential revealed by proximity ligation-based metagenomic analysis. Front. Microbiol., 10, 2986.

    Article  PubMed  PubMed Central  Google Scholar 

  • Geyer, R., Jambeck, J.R., and Law, K.L. 2017. Production, use, and fate of all plastics ever made. Sci. Adv., 3, e1700782.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong, G., Zhou, S., Luo, R., Gesang, Z., and Suolang, S. 2020. Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community. BMC Microbiol., 20, 302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., and Purnell, P. 2018. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater., 344, 179–199.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, J.P., Schratzberger, M., Sapp, M., and Osborn, A.M. 2014. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol., 14, 232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwai, S., Chai, B., Sul, W.J., Cole, J.R., Hashsham, S.A., and Tiedje, J.M. 2010. Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME J., 4, 279–285.

    Article  CAS  PubMed  Google Scholar 

  • Jacquin, J., Cheng, J., Odobel, C., Pandin, C., Conan, P., Pujo-Pay, M., Barbe, V., Meistertzheim, A.L., and Ghiglione, J.F. 2019. Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the “plastisphere”. Front. Microbiol., 10, 865.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karunatillaka, I., Jaroszewski, L., and Godzik, A. 2022. Novel putative polyethylene terephthalate (PET) plastic degrading enzymes from the environmental metagenome. Proteins, 90, 504–511.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D.W., Thawng, C.N., Choi, J.H., Lee, K., and Cha, C.J. 2018. Polymorphism of antibiotic-inactivating enzyme driven by ecology expands the environmental resistome. ISME J., 12, 267–276.

    Article  CAS  PubMed  Google Scholar 

  • Kirstein, I.V., Wichels, A., Gullans, E., Krohne, G., and Gerdts, G. 2019. The plastisphere - uncovering tightly attached plastic “specific” microorganisms. PLoS ONE, 14, e0215859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, R., Kumar, D., Pandya, L., Pandit, P.R., Patel, Z., Bhairappanavar, S., and Das, J. 2020. Chapter 10 - Gene-targeted metagenomics approach for the degradation of organic pollutants. In Shah, M.P., Rodriguez-Couto, S., and Sengör, S.S. (eds.), Emerging Technologies in Environmental Bioremediation, pp. 257–273. Elsevier, Cambridge, USA.

    Chapter  Google Scholar 

  • Kumar, R., Pandit, P., Kumar, D., Patel, Z., Pandya, L., Kumar, M., Joshi, C., and Joshi, M. 2021. Landfill microbiome harbour plastic degrading genes: a metagenomic study of solid waste dumping site of Gujarat, India. Sci. Total Environ., 779, 146184.

    Article  CAS  PubMed  Google Scholar 

  • Lam, K.N., Cheng, J., Engel, K., Neufeld, J.D., and Charles, T.C. 2015. Current and future resources for functional metagenomics. Front. Microbiol., 6, 1196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lear, G., Kingsbury, J.M., Franchini, S., Gambarini, V., Maday, S.D.M., Wallbank, J.A., Weaver, L., and Pantos, O. 2021. Plastics and the microbiome: impacts and solutions. Environ. Microbiome, 16, 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S., Cantarel, B., Henrissat, B., Gevers, D., Birren, B.W., Huttenhower, C., and Ko, G. 2014. Gene-targeted metagenomic analysis of glucan-branching enzyme gene profiles among human and animal fecal microbiota. ISME J., 8, 493–503.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y.X., Qin, Y., Chen, T., Lu, M., Qian, X., Guo, X., and Bai, Y. 2021. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell, 12, 315–330.

    Article  PubMed  Google Scholar 

  • Magnin, A., Pollet, E., Phalip, V., and Avérous, L. 2020. Evaluation of biological degradation of polyurethanes. Biotechnol. Adv., 39, 107457.

    Article  CAS  PubMed  Google Scholar 

  • Mayumi, D., Akutsu-Shigeno, Y., Uchiyama, H., Nomura, N., and Nakajima-Kambe, T. 2008. Identification and characterization of novel poly(DL-lactic acid) depolymerases from metagenome. Appl. Microbiol. Biotechnol., 79, 743–750.

    Article  CAS  PubMed  Google Scholar 

  • Mohanan, N., Montazer, Z., Sharma, P.K., and Levin, D.B. 2020. Microbial and enzymatic degradation of synthetic plastics. Front. Microbiol., 11, 580709.

    Article  PubMed  PubMed Central  Google Scholar 

  • Montazer, Z., Habibi Najafi, M.B., and Levin, D.B. 2020. Challenges with verifying microbial degradation of polyethylene. Polymers, 12, 123.

    Article  CAS  PubMed Central  Google Scholar 

  • O'Malley, M.A. and Walsh, D.A. 2021. Rethinking microbial infallibility in the metagenomics era. FEMS Microbiol. Ecol., 97, fiab092.

    Article  CAS  PubMed  Google Scholar 

  • Pathak, V.M. and Navneet. 2017. Review on the current status of polymer degradation: a microbial approach. Bioresour. Bioprocess., 4, 15.

    Article  Google Scholar 

  • Pinnell, L.J. and Turner, J.W. 2019. Shotgun metagenomics reveals the benthic microbial community response to plastic and bioplastic in a coastal marine environment. Front. Microbiol., 10, 1252.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prayogo, F.A., Budiharjo, A., Kusumaningrum, H.P., Wijanarka, W., Suprihadi, A., and Nurhayati, N. 2020. Metagenomic applications in exploration and development of novel enzymes from nature: a review. J. Genet. Eng. Biotechnol., 18, 39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Puglisi, E., Romaniello, F., Galletti, S., Boccaleri, E., Frache, A., and Cocconcelli, P.S. 2019. Selective bacterial colonization processes on polyethylene waste samples in an abandoned landfill site. Sci. Rep., 9, 14138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Purohit, J., Chattopadhyay, A., and Teli, B. 2020. Metagenomic exploration of plastic degrading microbes for biotechnological application. Curr. Genomics, 21, 253–270.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, J., Zhang, Y., Shi, Y., Jiang, J., Wu, S., Li, L., Shao, Y., and Xin, Z. 2020. Identification and characterization of a novel phthalatedegrading hydrolase from a soil metagenomic library. Ecotoxicol. Environ. Saf., 190, 110148.

    Article  CAS  PubMed  Google Scholar 

  • Quince, C., Walker, A.W., Simpson, J.T., Loman, N.J., and Segata, N. 2017. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol., 35, 833–844.

    Article  CAS  PubMed  Google Scholar 

  • Reichart, N.J., Bowers, R.M., Woyke, T., and Hatzenpichler, R. 2021. High potential for biomass-degrading enzymes revealed by hot spring metagenomics. Front. Microbiol., 12, 668238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roager, L. and Sonnenschein, E.C. 2019. Bacterial candidates for colonization and degradation of marine plastic debris. Environ. Sci. Technol., 53, 11636–11643.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, S.L., Piel, J., and Sunagawa, S. 2021. A roadmap for metagenomic enzyme discovery. Nat. Prod. Rep., 38, 1994–2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rüthi, J., Bölsterli, D., Pardi-Comensoli, L., Brunner, I., and Frey, B. 2020. The “plastisphere” of biodegradable plastics is characterized by specific microbial taxa of alpine and arctic soils. Front. Environ. Sci., 8, 562263.

    Article  Google Scholar 

  • Sadler, J.C. and Wallace, S. 2021. Microbial synthesis of vanillin from waste poly(ethylene terephthalate). Green Chem., 23, 4665–4672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankara Subramanian, S.H., Balachandran, K.R.S., Rangamaran, V.R., and Gopal, D. 2020. RemeDB: tool for rapid prediction of enzymes involved in bioremediation from high-throughput metagenome data sets. J. Comput. Biol., 27, 1020–1029.

    Article  CAS  PubMed  Google Scholar 

  • Schmeisser, C., Steele, H., and Streit, W.R. 2007. Metagenomics, biotechnology with non-culturable microbes. Appl. Microbiol. Biotechnol., 75, 955–962.

    Article  CAS  PubMed  Google Scholar 

  • Seeley, M.E., Song, B., Passie, R., and Hale, R.C. 2020. Microplastics affect sedimentary microbial communities and nitrogen cycling. Nat. Commun., 11, 2372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo, H., Kim, S., Son, H.F., Sagong, H.Y., Joo, S., and Kim, K.J. 2019. Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli. Biochem. Biophys. Res. Commun., 508, 250–255.

    Article  CAS  PubMed  Google Scholar 

  • Shah, A.A., Hasan, F., Hameed, A., and Ahmed, S. 2008. Biological degradation of plastics: a comprehensive review. Biotechnol. Adv., 26, 246–265.

    Article  CAS  PubMed  Google Scholar 

  • Shilpa, Basak, N., and Meena, S.S. 2022. Exploring the plastic degrading ability of microbial communities through metagenomic approach. Mater. Today Proc., 57, 1924–1932.

    Article  CAS  Google Scholar 

  • Singh Jadaun, J., Bansal, S., Sonthalia, A., Rai, A.K., and Singh, S.P. 2022. Biodegradation of plastics for sustainable environment. Bioresour. Technol., 347, 126697.

    Article  CAS  PubMed  Google Scholar 

  • Skariyachan, S., Taskeen, N., Kishore, A.P., and Krishna, B.V. 2022. Recent advances in plastic degradation - from microbial consortia-based methods to data sciences and computational biology driven approaches. J. Hazard. Mater., 426, 128086.

    Article  CAS  PubMed  Google Scholar 

  • Smith, M., Love, D.C., Rochman, C.M., and Neff, R.A. 2018. Microplastics in seafood and the implications for human health. Curr. Environ. Health Rep., 5, 375–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suenaga, H. 2015. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment. Front. Microbiol., 6, 1018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sulaiman, S., Yamato, S., Kanaya, E., Kim, J.J., Koga, Y., Takano, K., and Kanaya, S. 2012. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl. Environ. Microbiol., 78, 1556–1562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung, J.Y., Lee, Y.J., Cho, Y.J., Shin, M.N., Lee, S.J., Lee, H.S., Koh, H., Bae, J.W., Shin, J.H., Kim, H.J., et al. 2021. A large-scale metagenomic study for enzyme profiles using the focused identification of the ngs-based definitive enzyme research (FINDER) strategy. Biotechnol. Bioeng., 118, 4360–4374.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, R.C., Swan, S.H., Moore, C.J., and vom Saal, F.S. 2009. Our plastic age. Philos. Trans. R. Soc. B, 364, 1973–1976.

    Article  Google Scholar 

  • Tracanna, V., Ossowicki, A., Petrus, M.L.C., Overduin, S., Terlouw, B.R., Lund, G., Robinson, S.L., Warris, S., Schijlen, E., van Wezel, G.P., et al. 2021. Dissecting disease-suppressive rhizosphere microbiomes by functional amplicon sequencing and 10× metagenomics. mSystems, 6, e0111620.

    Article  PubMed  Google Scholar 

  • Ufarté, L., Laville, É., Duquesne, S., and Potocki-Veronese, G. 2015. Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol. Adv., 33, 1845–1854.

    Article  PubMed  Google Scholar 

  • Vaksmaa, A., Knittel, K., Abdala Asbun, A., Goudriaan, M., Ellrott, A., Witte, H.J., Vollmer, I., Meirer, F., Lott, C., Weber, M., et al. 2021. Microbial communities on plastic polymers in the mediterranean sea. Front. Microbiol., 12, 673553.

    Article  PubMed  PubMed Central  Google Scholar 

  • Viljakainen, V.R. and Hug, L.A. 2021. New approaches for the characterization of plastic-associated microbial communities and the discovery of plastic-degrading microorganisms and enzymes. Comput. Struct. Biotechnol. J., 19, 6191–6200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, R., Tiso, T., Bertling, J., O'Connor, K., Blank, L.M., and Bornscheuer, U.T. 2020. Possibilities and limitations of biotechnological plastic degradation and recycling. Nat. Catal., 3, 867–871.

    Article  CAS  Google Scholar 

  • Wei, R. and Zimmermann, W. 2017. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb. Biotechnol., 10, 1308–1322.

    CAS  Google Scholar 

  • Xue, N., Fang, Q., Pan, X., and Zhang, D. 2021. Distinct fungal plastisphere across different river functional zones: a watershed scale study. Sci. Total Environ., 752, 141879.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, R., Rajput, V., and Dharne, M. 2021. Functional metagenomic landscape of polluted river reveals potential genes involved in degradation of xenobiotic pollutants. Environ. Res., 192, 110332.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., and Oda, K. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351, 1196–1199.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Chen, F., Zeng, Z., Xu, M., Sun, F., Yang, L., Bi, X., Lin, Y., Gao, Y., Hao, H., et al. 2021. Advances in metagenomics and its application in environmental microorganisms. Front. Microbiol., 12, 766364.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., He, Z., Yang, Y., Deng, Y., Tringe, S.G., and Alvarez-Cohen, L. 2015. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio, 6, e02288–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, B., Wang, D., and Wei, N. 2022. Enzyme discovery and engineering for sustainable plastic recycling. Trends Biotechnol., 40, 22–37.

    Article  CAS  PubMed  Google Scholar 

  • Zrimec, J., Kokina, M., Jonasson, S., Zorrilla, F., and Zelezniak, A. 2021. Plastic-degrading potential across the global microbiome correlates with recent pollution trends. mBio, 12, e0215521.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was carried out with the support of National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea (Project No. PJ014974). This research was also supported by the Chung-Ang University research grant in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jun Cha.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DW., Ahn, JH. & Cha, CJ. Biodegradation of plastics: mining of plastic-degrading microorganisms and enzymes using metagenomics approaches. J Microbiol. 60, 969–976 (2022). https://doi.org/10.1007/s12275-022-2313-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-2313-7

Keywords

Navigation