Skip to main content
Log in

MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Environmentally friendly biomimetic materials with good deformability, high pressure-sensitive performance, and excellent biocompatibility are highly attractive for health monitoring, but to simultaneously meet these requirements is a formidable challenge. In this study, biocompatible MXene quantum dot (MQD)/watermelon peel (WMP) aerogels were obtained by immersing freeze-dried fresh watermelon peel into the quantum dot dispersion. The resulting bio-aerogels with a three-dimensional (3D) porous network structure exhibited a low in elasticity modulus (0.03 MPa) and limit of detection (0.4 Pa) and it showed biocompatibility. With a maximum pressure-sensitive response of 323 kPa−1, the 3D porous MQD/WMP aerogels exhibited good stability. In addition, the sensing signals could be displayed on mobile phones through a Bluetooth module to monitor human motion (pulse, sound, and walking) in real time. More importantly, the MQD/WMP aerogels exhibited excellent biocompatibility in a cytotoxicity test, thus decreasing the safety risk when they are applied to human skin. The finding in this study will facilitate the fabrication of high-performance biomimetic MXene active matrices, which are derived from natural biological materials, for flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cools, A. M.; Maenhout, A. G.; Vanderstukken, F.; Declève, P.; Johansson, F. R.; Borms, D. The challenge of the sporting shoulder: From injury prevention through sport-specific rehabilitation toward return to play. Ann. Phys. Rehabil. Med. 2021, 64, 101384.

    Article  Google Scholar 

  2. Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

    Article  CAS  Google Scholar 

  3. Wang, Z. R.; Wang, S.; Zeng, J. F.; Ren, X. C.; Chee, A. J. Y.; Yiu, B. Y. S.; Chung, W. C.; Yang, Y.; Yu, A. C. H.; Roberts, R. C. et al. High sensitivity, wearable, piezoresistive pressure sensors based on irregular microhump structures and its applications in body motion sensing. Small 2016, 12, 3827–3836.

    Article  CAS  Google Scholar 

  4. Chen, S. W.; Wu, N.; Lin, S. Z.; Duan, J. J.; Xu, Z. S.; Pan, Y.; Zhang, H. B.; Xu, Z. H.; Huang, L.; Hu, B. et al. Hierarchical elastomer tuned self-powered pressure sensor for wearable multifunctional cardiovascular electronics. Nano Energy 2020, 70, 104460.

    Article  CAS  Google Scholar 

  5. Wang, L. L.; Lou, Z.; Wang, K.; Zhao, S. F.; Yu, P. C.; Wei, W.; Wang, D. Y.; Han, W.; Jiang, K.; Shen, G. Z. Biocompatible and biodegradable functional polysaccharides for flexible humidity sensors. Research 2020, 2020, 8716847.

    CAS  Google Scholar 

  6. Yang, J.; Luo, S.; Zhou, X.; Li, J. L.; Fu, J. T.; Yang, W. D.; Wei, D. P. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl. Mater. Interfaces 2019, 11, 14997–15006.

    Article  CAS  Google Scholar 

  7. Guo, Y.; Zhong, M. J.; Fang, Z. W.; Wan, P. B.; Yu, G. H. A Wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 2019, 19, 1143–1150.

    Article  Google Scholar 

  8. Ge, G.; Cai, Y. C.; Dong, Q. C.; Zhang, Y. Z.; Shao, J. J.; Huang, W.; Dong, X. C. A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 2018, 10, 10033–10040.

    Article  CAS  Google Scholar 

  9. Lou, Z.; Wang, L. L.; Jiang, K.; Wei, Z. M.; Shen, G. Z. Reviews of wearable healthcare systems: Materials, devices and system integration. Mater. Sci. Eng. R Rep. 2020, 140, 100523.

    Article  Google Scholar 

  10. Li, X. P.; Li, Y.; Li, X. F.; Song, D. K.; Min, P.; Hu, C.; Zhang, H. B.; Koratkar, N.; Yu, Z. Z. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. J. Colloid Interface Sci. 2019, 542, 54–62.

    Article  CAS  Google Scholar 

  11. Shi, L.; Li, Z.; Chen, M.; Qin, Y. J.; Jiang, Y. Z.; Wu, L. M. Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density. Nat. Commun. 2020, 11, 3529.

    Article  CAS  Google Scholar 

  12. Li, X.; Fan, Y. J.; Li, H. Y.; Cao, J. W.; Xiao, Y. C.; Wang, Y.; Liang, F.; Wang, H. L.; Jiang, Y.; Wang, Z. L. et al. Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor. ACS Nano 2020, 14, 9605–9612.

    Article  CAS  Google Scholar 

  13. Zhao, T. T.; Yuan, L.; Li, T. K.; Chen, L. L.; Li, X. F.; Zhang, J. H. Pollen-shaped hierarchical structure for pressure sensors with high sensitivity in an ultrabroad linear response range. ACS Appl. Mater. Interfaces 2020, 12, 55362–55371.

    Article  CAS  Google Scholar 

  14. Wang, X. M.; Tao, L. Q.; Yuan, M.; Wang, Z. P.; Yu, J. B.; Xie, D. L.; Luo, F.; Chen, X. P.; Wong, C. P. Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity. Nat. Commun. 2021, 12, 1776.

    Article  Google Scholar 

  15. Fu, X. Y.; Wang, L. L.; Zhao, L. J.; Yuan, Z. Y.; Zhang, Y. P.; Wang, D. Y.; Wang, D. P.; Li, J. Z.; Li, D. D.; Shulga, V. et. al. Controlled assembly of MXene nanosheets as an electrode and active layer for high performance electronic skin. Adv. Funct. Mater. 2021, 31, 2010533.

    Article  CAS  Google Scholar 

  16. Keum, K.; Eom, J.; Lee, J. H.; Heo, J. S.; Park, S. K.; Kim, Y. H. Fully-integrated wearable pressure sensor array enabled by highly sensitive textile-based capacitive ionotronic devices. Nano Energy 2021, 79, 105479.

    Article  CAS  Google Scholar 

  17. Si, Y.; Wang, X. Q.; Yan, C. C.; Yang, L.; Yu, J. Y.; Ding, B. Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 2016, 28, 9512–9518.

    Article  CAS  Google Scholar 

  18. Li, H. F.; Ding, G. F.; Yang, Z. Q. A high sensitive flexible pressure sensor designed by silver nanowires embedded in polyimide (AgNW-PI). Micromachines 2019, 10, 206.

    Article  Google Scholar 

  19. Shi, J. D.; Wang, L.; Dai, Z. H.; Zhao, L. Y.; Du, M. D.; Li, H. B.; Fang, Y. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 2018, 14, 1800819.

    Article  Google Scholar 

  20. Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 2013, 25, 6692–6698.

    Article  CAS  Google Scholar 

  21. Fu, Q. L.; Chen, Y.; Sorieul, M. Wood-based flexible electronics. ACS Nano 2020, 14, 3528–3538.

    Article  CAS  Google Scholar 

  22. Wang, D. Y.; Wang, L. L.; Lou, Z.; Zheng, Y. Q.; Wang, K.; Zhao, L. J.; Han, W.; Jiang, K.; Shen, G. Z. Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 2020, 78, 105252.

    Article  CAS  Google Scholar 

  23. Yu, S. X.; Li, L. L.; Wang, J. J.; Liu, E. P.; Zhao, J. X.; Xu, F.; Cao, Y. P.; Lu, C. H. Light-boosting highly sensitive pressure sensors based on bioinspired multiscale surface structures. Adv. Funct. Mater. 2020, 30, 1907091.

    Article  CAS  Google Scholar 

  24. Li, Q. M.; Yin, R.; Zhang, D. B.; Liu, H.; Chen, X. Y.; Zheng, Y. J.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J. Mater. Chem. A 2020, 8, 21131–21141.

    Article  CAS  Google Scholar 

  25. Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.

    Article  CAS  Google Scholar 

  26. Ha, M.; Lim, S.; Cho, S.; Lee, Y.; Na, S. Y.; Baig, C.; Ko, H. Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors. ACS Nano 2018, 12, 3964–3974.

    Article  CAS  Google Scholar 

  27. Zheng, Y. J.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D. B.; Shi, X. Z.; Zhang, B.; Liu, C. T.; Shen, C. Y. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and e-skin. Chem. Eng. J. 2021, 420, 127720.

    Article  CAS  Google Scholar 

  28. Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244–1252.

    Article  Google Scholar 

  29. Wang, K.; Lou, Z.; Wang, L. L.; Zhao, L. J.; Zhao, S. F.; Wang, D. Y.; Han, W.; Jiang, K.; Shen G. Z. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 2019, 13, 9139–9147.

    Article  CAS  Google Scholar 

  30. Méndez, D. A.; Fabra, M. J.; Gómez-Mascaraque, L.; López-Rubio, A.; Martinez-Abad, A. Modelling the extraction of pectin towards the valorisation of watermelon rind waste. Foods 2021, 10, 738.

    Article  Google Scholar 

  31. Elsayes A.; Sharma V.; Yiannacou K.; Koivikko A.; Rasheed A.; Sariola V. Plant-based biodegradable capacitive tactile pressure sensor using flexible and transparent leaf skeletons as electrodes and flower petal as dielectric layer. Adv. Sustainable Syst. 2020, 4, 2000056.

    Article  CAS  Google Scholar 

  32. Park, H.; Jeong, Y. R.; Hong, S. Y.; Jin, S. W.; Lee, S. J.; Zi, G.; Ha, J. S. Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars. ACS Nano 2015, 9, 9974–9985.

    Article  CAS  Google Scholar 

  33. Wang, L. L.; Chen, S.; Li, W.; Wang, K.; Lou, Z.; Shen, G. Z. Grainboundary-induced drastic sensing performance enhancement of polycrystalline-microwire printed gas sensors. Adv. Mater. 2019, 31, 1804583.

    Article  Google Scholar 

  34. Li, L. L.; Wang, D. P.; Zhang, D.; Ran, W. H.; Yan, Y. X.; Li, Z. X.; Wang, L. L.; Shen, G. Z. Near-infrared light triggered self-powered mechano-optical communication system using wearable photodetector textile. Adv. Funct. Mater. 2021, 31, 2104782.

    Article  CAS  Google Scholar 

  35. Zhao, L. J.; Wang, L. L.; Zheng, Y. Q.; Zhao, S. F.; Wei, W.; Zhang, D. W.; Fu, X. Y.; Jiang, K.; Shen, G. Z.; Han, W. Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring. Nano Energy 2021, 84, 105921.

    Article  CAS  Google Scholar 

  36. Wang, D. Y.; Wang, L. L.; Shen, G. Z. Nanofiber/nanowires-based flexible and stretchable sensors. J. Semicond. 2020, 41, 041605.

    Article  CAS  Google Scholar 

  37. Dong, K.; Wang, Z. L. Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. J. Semicond. 2021, 42, 101601.

    Article  CAS  Google Scholar 

  38. Fan, Z. Y.; Chen, Y. H.; Lin, Y. J.; Zi, Y. L.; Ko, H.; Zhang, Q. P. Preface to the special issue on flexible energy devices. J. Semicond. 2021, 42, 100101.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62174152, 61625404, and 61888102) and Foshan Innovative and Entrepreneurial Research Team Program (No. 2018IT100031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaojun Chen, Lili Wang or Guozhen Shen.

Additional information

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Du, H., Chen, Z. et al. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 15, 3653–3659 (2022). https://doi.org/10.1007/s12274-021-3967-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3967-x

Keywords

Navigation