Skip to main content
Log in

Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Enhanced cellular uptake efficiency of nanoparticles is important for their biomedical applications, including photothermal therapy (PTT) for cancer. In this study, a one-pot method was used to construct a positively charged and magnet-responsive nanocomposite comprising reduced graphene oxide anchoring iron oxide (RGI) with a polyethylenimine (PEI) modification, to improve the efficiency of cell internalization. The surface charge can be finely tuned using PEIs of different molecular weights. The obtained RGI1.8k composite (RGI modified by 1.8 kDa PEI) could load indocyanine green (ICG) at a high mass ratio of 10:3 and ablate cancer cells using low-density laser irradiation because of its positively charged surface. In addition, the hybrids of RGI1.8k and ICG could kill most cancer cells at a laser density of 0.7 W/cm2 in vitro and 0.3 W/cm2 in vivo. At the same time, cell viability could be controlled by converting the external magnetic-field direction because of the enrichment of the magnet-responsive composite in vitro and in vivo. Furthermore, RGI1.8k-ICGs could be used as T2-weighted magnetic resonance and infrared thermal imaging agents. Coupled with the magnetic target effect, the imaging signal could be improved significantly. Therefore, RGI1.8k-ICGs represent a new highly efficient PTT and imaging agent with great potential for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, J.; Yang, Y.; Zhang, C. Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015, 115, 11669–11717.

    Article  Google Scholar 

  2. Cui, W.; Li, J. B.; Decher, G. Self-assembled smart nanocarriers for targeted drug delivery. Adv. Mater. 2016, 28, 1302–1311.

    Article  Google Scholar 

  3. Du, B. J.; Tian, L.; Gu, X. X.; Li, D.; Wang, E. K.; Wang, J. Anionic lipid, pH-sensitive liposome-gold nanoparticle hybrids for gene delivery—Quantitative research of the mechanism. Small 2015, 11, 2333–2340.

    Article  Google Scholar 

  4. Mikhaylov, G.; Mikac, U.; Magaeva, A. A.; Itin, V. I.; Naiden, E. P.; Psakhye, I.; Babes, L.; Reinheckel, T.; Peters, C.; Zeiser, R. et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotechnol. 2011, 6, 594–602.

    Article  Google Scholar 

  5. Wang, C. S.; Li, J. Y.; Amatore, C.; Chen, Y.; Jiang, H.; Wang, X. M. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem., Int. Ed. 2011, 50, 11644–11648.

    Article  Google Scholar 

  6. Zhang, K.; Hao, L. L.; Hurst, S. J.; Mirkin, C. A. Antibodylinked spherical nucleic acids for cellular targeting. J. Am. Chem. Soc. 2012, 134, 16488–16491.

    Article  Google Scholar 

  7. Nguyen, K. T.; Zhao, Y. L. Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics. Acc. Chem. Res. 2015, 48, 3016–3025.

    Article  Google Scholar 

  8. Yang, K.; Zhang, S. A.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. A. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

    Article  Google Scholar 

  9. Yuan, H.; Fales, A. M.; Vo-Dinh, T. Tat peptide-functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 2012, 134, 11358–11361.

    Article  Google Scholar 

  10. Wang, S. J.; Huang, P.; Nie, L. M.; Xing, R. J.; Liu, D. B.; Wang, Z.; Lin, J.; Chen, S. H.; Niu, G.; Lu, G. M. et al. Single continuous wave laser induced photodynamic/ plasmonic photothermal therapy using photosensitizerfunctionalized gold nanostars. Adv. Mater. 2013, 25, 3055–3061.

    Article  Google Scholar 

  11. Yildirimer, L.; Thanh, N. T. K.; Loizidou, M.; Seifalian, A. M. Toxicology and clinical potential of nanoparticles. Nano Today 2011, 6, 585–607.

    Article  Google Scholar 

  12. Shen, S.; Tang, H. Y.; Zhang, X. T.; Ren, J. F.; Pang, Z. Q.; Wang, D. G.; Gao, H. L.; Qian, Y.; Jiang, X. G.; Yang, W. L. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 2013, 34, 3150–3158.

    Article  Google Scholar 

  13. Chandrasekaran, R.; Lee, A. S. W.; Yap, L. W.; Jans, D. A.; Wagstaff, K. M.; Cheng, W. L. Tumor cell-specific photothermal killing by selex-derived DNA aptamer-targeted gold nanorods. Nanoscale 2016, 8, 187–196.

    Article  Google Scholar 

  14. Jiang, Y.; Huo, S. D.; Mizuhara, T.; Das, R.; Lee, Y. W.; Hou, S.; Moyano, D. F.; Duncan, B.; Liang, X. J.; Rotello, V. M. The interplay of size and surface functionality on the cellular uptake of sub-10 nm gold nanoparticles. ACS Nano 2015, 9, 9986–9993.

    Article  Google Scholar 

  15. Shen, H.; Zhang, L. M.; Liu, M.; Zhang, Z. J. Biomedical applications of graphene. Theranostics 2012, 2, 283–294.

    Article  Google Scholar 

  16. Wang, Y.; Li, Z. H.; Hu, D. H.; Lin, C. T.; Li, J. H.; Lin, Y. H. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 2010, 132, 9274–9276.

    Article  Google Scholar 

  17. Yang, K.; Hu, L. L.; Ma, X. X.; Ye, S. Q.; Cheng, L.; Shi, X. Z.; Li, C. H.; Li, Y. G.; Liu, Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 2012, 24, 1868–1872.

    Article  Google Scholar 

  18. Yang, K.; Wan, J. M.; Zhang, S.; Tian, B.; Zhang, Y. J.; Liu, Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 2012, 33, 2206–2214.

    Article  Google Scholar 

  19. Hudson, D. E.; Hudson, D. O.; Wininger, J. M.; Richardson, B. D. Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed. Laser Surg. 2013, 31, 163–168.

    Article  Google Scholar 

  20. Bao, T.; Yin, W. Y.; Zheng, X. P.; Zhang, X.; Yu, J.; Dong, X. H.; Yong, Y.; Gao, F. P.; Yan, L.; Gu, Z. J. et al. One-pot synthesis of PEGylated plasmonic MoO3–x hollow nanospheres for photoacoustic imaging guided chemophotothermal combinational therapy of cancer. Biomaterials 2016, 76, 11–24.

    Article  Google Scholar 

  21. Zhang, R. R.; Su, S. S.; Hu, K. L.; Shao, L. H.; Deng, X. W.; Sheng, W.; Wu, Y. Smart micelle@polydopamine core-shell nanoparticles for highly effective chemo-photothermal combination therapy. Nanoscale 2015, 7, 19722–19731.

    Article  Google Scholar 

  22. Chung, U. S.; Kim, J. H.; Kim, B.; Kim, E.; Jang, W. D.; Koh, W. G. Dendrimer porphyrin-coated gold nanoshells for the synergistic combination of photodynamic and photothermal therapy. Chem. Commun. 2016, 52, 1258–1261.

    Article  Google Scholar 

  23. Park, H.; Park, W.; Na, K. Doxorubicin loaded singletoxygen producible polymeric micelle based on chlorine e6 conjugated pluronic F127 for overcoming drug resistance in cancer. Biomaterials 2014, 35, 7963–7969.

    Article  Google Scholar 

  24. Yin, W. Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L. J.; Zheng, X. P.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z. J. et al. Highthroughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922–6933.

    Article  Google Scholar 

  25. Yu, J.; Yin, W. Y.; Zheng, X. P.; Tian, G.; Zhang, X.; Bao, T.; Dong, X. H.; Wang, Z. L.; Gu, Z. J.; Ma, X. Y. et al. Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/ photoacoustic imaging. Theranostics 2015, 5, 931–945.

    Article  Google Scholar 

  26. Jiang, S.; Eltoukhy, A. A.; Love, K. T.; Langer, R.; Anderson, D. G. Lipidoid-coated iron oxide nanoparticles for efficient DNA and sirna delivery. Nano Lett. 2013, 13, 1059–1064.

    Article  Google Scholar 

  27. Liang, C.; Song, X. J.; Chen, Q.; Liu, T.; Song, G. S.; Peng, R.; Liu, Z. Magnetic field-enhanced photothermal ablation of tumor sentinel lymph nodes to inhibit cancer metastasis. Small 2015, 11, 4856–4863.

    Article  Google Scholar 

  28. Sun, H. M.; Cao, L. Y.; Lu, L. H. Magnetite/reduced graphene oxide nanocomposites: One step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res. 2011, 4, 550–562.

    Article  Google Scholar 

  29. Yang, X.; Chen, C. L.; Li, J. X.; Zhao, G. X.; Ren, X. M.; Wang, X. K. Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv. 2012, 2, 8821–8826.

    Article  Google Scholar 

  30. Peng, E. W.; Choo, E. S. G.; Chandrasekharan, P.; Yang, C. T.; Ding, J.; Chuang, K. H.; Xue, J. M. Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications. Small 2012, 8, 3620–3630.

    Article  Google Scholar 

  31. Wang, H.-X.; Zuo, Z.-Q.; Du, J.-Z.; Wang, Y.-C.; Sun, R.; Cao, Z.-T.; Ye, X.-D.; Wang, J.-L.; Leong, K. W.; Wang, J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today 2016, 11, 133–144.

    Article  Google Scholar 

  32. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  Google Scholar 

  33. Chen, Y.; Song, B. H.; Lu, L.; Xue, J. M. Ultra-small Fe3O4 nanoparticle decorated graphene nanosheets with superior cyclic performance and rate capability. Nanoscale 2013, 5, 6797–6803.

    Article  Google Scholar 

  34. Robinson, J. T.; Tabakman, S. M.; Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Vinh, D.; Dai, H. J. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 2011, 133, 6825–6831.

    Article  Google Scholar 

  35. Liu, X. S.; Chen, Y. J.; Li, H.; Huang, N.; Jin, Q.; Ren, K. F.; Ji, J. Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano 2013, 7, 6244–6257.

    Article  Google Scholar 

  36. Liu, J. B.; Fu, S. H.; Yuan, B.; Li, Y. L.; Deng, Z. X. Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 2010, 132, 7279–7281.

    Article  Google Scholar 

  37. Feng, L. Z.; Yang, X. Z.; Shi, X. Z.; Tan, X. F.; Peng, R.; Wang, J.; Liu, Z. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small 2013, 9, 1989–1997.

    Article  Google Scholar 

  38. Wang, L.; Liu, J. H.; Dai, Y. L.; Yang, Q.; Zhang, Y. X.; Yang, P. P.; Cheng, Z. Y.; Lian, H. Z.; Li, C. X.; Hou, Z. Y. et al. Efficient gene delivery and multimodal imaging by lanthanide-based upconversion nanoparticles. Langmuir 2014, 30, 13042–13051.

    Article  Google Scholar 

  39. Xiao, L. S.; Li, J. T.; Brougham, D. F.; Fox, E. K.; Feliu, N.; Bushmelev, A.; Schmidt, A.; Mertens, N.; Kiessling, F.; Valldor, M. et al. Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano 2011, 5, 6315–6324.

    Article  Google Scholar 

  40. Lv, Z. Z.; Yang, X.; Wang, E. K. Highly concentrated polycations-functionalized graphene nanosheets with excellent solubility and stability, and its fast, facile and controllable assembly of multiple nanoparticles. Nanoscale 2013, 5, 663–670.

    Article  Google Scholar 

  41. Zhang, L. M.; Xia, J. G.; Zhao, Q. H.; Liu, L. W.; Zhang, Z. J. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 2010, 6, 537–544.

    Article  Google Scholar 

  42. Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X. S.; Zhang, C. L.; Zhou, X. J.; Guo, S. W.; Cui, D. X. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 2011, 1, 240–250.

    Article  Google Scholar 

  43. Kim, S.; Ryoo, S. R.; Na, H. K.; Kim, Y. K.; Choi, B. S.; Lee, Y.; Kim, D. E.; Min, D. H. Deoxyribozyme-loaded nanographene oxide for simultaneous sensing and silencing of the hepatitis C virus gene in liver cells. Chem. Commun. 2013, 49, 8241–8243.

    Article  Google Scholar 

  44. Ma, Y.; Tong, S.; Bao, G.; Gao, C.; Dai, Z. F. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials 2013, 34, 7706–7714.

    Article  Google Scholar 

  45. Deng, K. R.; Hou, Z. Y.; Deng, X. R.; Yang, P. P.; Li, C. X.; Lin, J. Enhanced antitumor efficacy by 808 nm laserinduced synergistic photothermal and photodynamic therapy based on a indocyanine-green-attached W18O49 nanostructure. Adv. Funct. Mater. 2015, 25, 7280–7290.

    Article  Google Scholar 

  46. Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353–1359.

    Article  Google Scholar 

  47. Habash, R. W. Y.; Bansal, R.; Krewski, D.; Alhafid, H. T. Thermal therapy, part 1: An introduction to thermal therapy. Crit. Rev. Biomed. Eng. 2006, 34, 459–489.

    Article  Google Scholar 

  48. Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63, 136–151.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 31301177, 21427811, and 91430217), and MOST China (No. 2013YQ170585). J. W. also appreciated NSF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Li, Erkang Wang or Jin Wang.

Electronic supplementary material

12274_2016_1418_MOESM1_ESM.pdf

Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, B., Liu, J., Ding, G. et al. Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy. Nano Res. 10, 2280–2295 (2017). https://doi.org/10.1007/s12274-016-1418-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1418-x

Keywords

Navigation