Skip to main content

Advertisement

Log in

Quantification of [18F]-FDG uptake in atherosclerotic plaque: impact of renal function

  • Short communication
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Impaired renal function causes both increased and prolonged tracer availability in the blood-pool which might result in increased tracer accumulation in atherosclerotic lesions. Therefore, the aim of this study was to investigate a possible correlation between the intensity of tracer uptake in atherosclerotic lesions and renal function.

Methods

Data from 50 [18F]-FDG scans were visually evaluated for tracer uptake in vessel wall alterations. Lesions were analyzed semiquantitatively by determining the blood-pool standardized uptake values (SUVblood-pools), maximum SUVs (SUVmaxs), and the target-to-background ratio (TBR). These parameters were tested for correlation with estimated glomerular filtration rate (eGFR), and cardiovascular risk factors.

Results

Both SUVblood-pools (r s = −0.32, p = 0.03) and SUVmaxs for [18F]-FDG (r s = −0.50, p < 0.0001) showed a significant negative correlation with eGFR. TBRs for [18F]-FDG demonstrated a significant positive correlation with eGFRs (r s = 0.21, p = 0.02).

Conclusion

This study found that both intravascular tracer availability (SUVblood-pool) and intralesional tracer uptake (SUVmax) are influenced by renal function. Calculation of TBR to account for that effect may result in overcorrection in case of [18F]-FDG. Renal insufficiency or subclinical changes in renal function have to be considered as a confounding factor in PET of atherosclerotic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med. 2004;45:1431–4.

    PubMed  Google Scholar 

  2. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45:1519–27.

    PubMed  Google Scholar 

  3. Laffon E, Cazeau AL, Monet A, de Clermont H, Fernandez P, Marthan R, et al. The effect of renal failure on 18F-FDG uptake: a theoretic assessment. J Nucl Med Technol. 2008;36:200–2.

    Article  PubMed  Google Scholar 

  4. Wassélius J, Larsson S, Jacobsson H. Time-to-time correlation of high-risk atherosclerotic lesions identified with [(18)F]-FDG-PET/CT. Ann Nucl Med. 2009;23:59–64.

    Article  PubMed  Google Scholar 

  5. Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50:1611–20.

    Article  PubMed  Google Scholar 

  6. Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008;49:871–8.

    Article  PubMed  Google Scholar 

  7. Saam T, Rominger A, Wolpers S, Nikolaou K, Rist C, Greif M, et al. Association of inflammation of the left anterior descending coronary artery with cardiovascular risk factors, plaque burden and pericardial fat volume: a PET/CT study. Eur J Nucl Med Mol Imaging. 2010;37:1203–12.

    Article  PubMed  Google Scholar 

  8. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-d-glucose. J Nucl Med. 1978;19:1154–61.

    PubMed  CAS  Google Scholar 

  9. Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48:1825–31.

    Article  PubMed  CAS  Google Scholar 

  10. Ogawa M, Magata Y, Kato T, Hatano K, Ishino S, Mukai T, et al. Application of 18F-FDG PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. J Nucl Med. 2006;47:1845–50.

    PubMed  CAS  Google Scholar 

  11. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461–70.

    PubMed  CAS  Google Scholar 

  12. Bural GG, Torigian DA, Chamroonrat W, Houseni M, Chen W, Basu S. FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging. 2008;35:562–9.

    Article  PubMed  Google Scholar 

  13. Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, Mozley PD, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med. 2001;42:1412–7.

    PubMed  CAS  Google Scholar 

  14. Agarwal R. Effects of statins on renal function. Mayo Clin Proc. 2007;82:1381–90.

    Article  PubMed  CAS  Google Scholar 

  15. Walter DH, Dimmeler S, Zeiher AM. Effects of statins on endothelium and endothelial progenitor cell recruitment. Semin Vasc Med. 2004;4:385–93.

    Article  PubMed  Google Scholar 

  16. Bianchi S, Bigazzi R, Caiazza A, Campese VM. A controlled, prospective study of the effects of atorvastatin on proteinuria and progression of kidney disease. Am J Kidney Dis. 2003;41:565–70.

    Article  PubMed  CAS  Google Scholar 

  17. Athyros VG, Mikhailidis DP, Papageorgiou AA, Symeonidis AN, Pehlivanidis AN, Bouloukos VI, et al. The effect of statins versus untreated dyslipidaemia on renal function in patients with coronary heart disease. A subgroup analysis of the Greek atorvastatin and coronary heart disease evaluation (GREACE) study. J Clin Pathol. 2004;57:728–34.

    Article  PubMed  CAS  Google Scholar 

  18. Levey AS. Measurement of renal function in chronic renal disease. Kidney Int. 1990;38:167–84.

    Article  PubMed  CAS  Google Scholar 

  19. Kasiske BL, Andany MA, Danielson B. A thirty percent chronic decline in inverse serum creatinine is an excellent predictor of late renal allograft failure. Am J Kidney Dis. 2002;39:762–8.

    Article  PubMed  Google Scholar 

  20. Brandstrom E, Grzegorczyk A, Jacobsson L, Friberg P, Lindahl A, Aurell M. GFR measurement with iohexol and 51Cr-EDTA A comparison of the two favoured GFR markers in Europe. Nephrol Dial Transplant. 1998;13:1176–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Derlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derlin, T., Habermann, C.R., Hahne, J.D. et al. Quantification of [18F]-FDG uptake in atherosclerotic plaque: impact of renal function. Ann Nucl Med 25, 586–591 (2011). https://doi.org/10.1007/s12149-011-0503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-011-0503-1

Keywords

Navigation