Skip to main content

Advertisement

Log in

Evaluation of a Low-Toxicity PARP Inhibitor as a Neuroprotective Agent for Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Repurposing PARP-1 inhibitors (PARPi) for non-oncological applications offers an attractive therapeutic strategy for pathological conditions characterized by PARP-1 hyperactivity. In the context of Parkinson’s disease (PD), PARP-1 hyperactivity has been linked to neuronal death and disease progression. From a therapy perspective, the evaluation of PARPi as neuroprotective agents may offer a new therapeutic alternative for neurodegenerative disorders. An ideal PARPi needs to inhibit PARP-1 hyperactivity while also limiting downstream DNA damage and cellular toxicity—an effect that is attractive in cancer but far from ideal in neurological disease applications. Consequently, in this study, we set out to evaluate the neuroprotective properties of a previously reported low-toxicity PARPi (10e) using in vitro neuronal models of PD. 10e is a structural analogue of FDA-approved PARPi olaparib, with high PARP-1 affinity and selectivity. Our studies revealed that 10e protects neuronal cells from oxidative stress and DNA damage. In addition, 10e exhibits neuroprotective properties against α-synuclein pre-formed fibrils (αSyn PFF) mediated effects, including reduction in the levels of phosphorylated αSyn and protection against abnormal changes in NAD+ levels. Our in vitro studies with 10e provide support for repurposing high-affinity and low-toxicity PARPi for neurological applications and lay the groundwork for long-term therapeutic studies in animal models of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data and Materials Availability

All data generated and analyzed in this study are included in this published article.

Abbreviations

PARP-1:

Poly(ADP-ribose) polymerase-1

PARPi:

PARP inhibitor

PD:

Parkinson’s disease

αSyn:

Alpha-synuclein

PFF:

Pre-formed fibrils

PAR:

Poly (ADP-ribose)

NAD+ :

Nicotinamide adenine dinucleotide

References

  1. Deshmukh D, Qiu Y (2015) Role of PARP-1 in prostate cancer. Am J Clin Exp Urol 3(1):1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ba X, Garg NJ (2011) Signaling mechanism of poly(ADP-ribose) polymerase-1 (PARP-1) in inflammatory diseases. Am J Pathol 178(3):946–955

    Article  CAS  Google Scholar 

  3. Rosado MM, Bennici E, Novelli F, Pioli C (2013) Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology 139(4):428–437

    Article  CAS  Google Scholar 

  4. Wei W, Li Y, Lv S, Zhang C, Tian Y (2016) PARP-1 may be involved in angiogenesis in epithelial ovarian cancer. Oncol Lett 12(6):4561–4567

    Article  CAS  Google Scholar 

  5. Malapetsa A, Noe AJ, Poirier GG, Desnoyers S, Berger NA, Panasci LC (1996) Identification of a 116 kDa protein able to bind 1,3-bis(2-chloroethyl)-1-nitrosourea-damaged DNA as poly(ADP-ribose) polymerase. Mutat Res 362(1):41–50

    Article  Google Scholar 

  6. Ray Chaudhuri A, Nussenzweig A (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18(10):610–621

    Article  CAS  Google Scholar 

  7. Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70(3):789–829

    Article  CAS  Google Scholar 

  8. David KK, Andrabi SA, Dawson TM, Dawson VL (2009) Parthanatos, a messenger of death. Front Biosci (Landmark edition) 14:1116

    Article  CAS  Google Scholar 

  9. McGurk L, Mojsilovic-Petrovic J, Van Deerlin VM, Shorter J, Kalb RG, Lee VM, Trojanowski JQ, Lee EB et al (2018) Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis. Acta Neuropathol Commun 6(1):84

    Article  CAS  Google Scholar 

  10. Strosznajder JB, Czapski GA, Adamczyk A, Strosznajder RP (2012) Poly(ADP-ribose) polymerase-1 in amyloid beta toxicity and Alzheimer’s disease. Mol Neurobiol 46(1):78–84

    Article  CAS  Google Scholar 

  11. Kam T-I, Mao X, Park H, Chou S-C, Karuppagounder SS, Umanah GE, Yun SP, Brahmachari S et al (2018) Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease. Science 362(6414):eaat8407

    Article  Google Scholar 

  12. Liu C, Fang Y (2019) New insights of poly(ADP-ribosylation) in neurodegenerative diseases: a focus on protein phase separation and pathologic aggregation. Biochem Pharmacol 167:58–63

    Article  CAS  Google Scholar 

  13. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J et al (2006) Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281(40):29739–29752

    Article  CAS  Google Scholar 

  14. McGurk L, Gomes E, Guo L, Mojsilovic-Petrovic J, Tran V, Kalb RG, Shorter J, Bonini NM (2018) Poly(ADP-Ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization. Mol Cell 71(5):703–717 e709

    Article  CAS  Google Scholar 

  15. McGurk L, Gomes E, Guo L, Shorter J, Bonini NM (2018) Poly(ADP-ribose) engages the TDP-43 nuclear-localization sequence to regulate granulo-filamentous aggregation. Biochemistry 57(51):6923–6926

    Article  CAS  Google Scholar 

  16. Outeiro TF, Grammatopoulos TN, Altmann S, Amore A, Standaert DG, Hyman BT, Kazantsev AG (2007) Pharmacological inhibition of PARP-1 reduces alpha-synuclein- and MPP+-induced cytotoxicity in Parkinson’s disease in vitro models. Biochem Biophys Res Commun 357(3):596–602

    Article  CAS  Google Scholar 

  17. McCann KE (2019) Advances in the use of PARP inhibitors for BRCA1/2-associated breast cancer: talazoparib. Future Oncol 15(15):1707–1715

    Article  CAS  Google Scholar 

  18. Syed YY (2017) Rucaparib: first global approval. Drugs 77(5):585–592

    Article  CAS  Google Scholar 

  19. Scott LJ (2017) Niraparib: first global approval. Drugs 77(9):1029–1034

    Article  Google Scholar 

  20. Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T, Sridhara R, Lee E et al (2015) FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res 21(19):4257–4261

    Article  CAS  Google Scholar 

  21. Zandarashvili L, Langelier M-F, Velagapudi UK, Hancock MA, Steffen JD, Billur R, Hannan ZM, Wicks AJ et al (2020) Structural basis for allosteric PARP-1 retention on DNA breaks. Science 368(6486):eaax6367

    Article  CAS  Google Scholar 

  22. Reilly SW, Puentes LN, Wilson K, Hsieh C-J, Weng C-C, Makvandi M, Mach RH (2018) Examination of diazaspiro cores as piperazine bioisosteres in the olaparib framework shows reduced DNA damage and cytotoxicity. J Med Chem 61(12):5367–5379

    Article  CAS  Google Scholar 

  23. Abdelkarim GE, Gertz K, Harms C, Katchanov J, Dirnagl U, Szabo C, Endres M (2001) Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke. Int J Mol Med 7:255–260

    CAS  PubMed  Google Scholar 

  24. Loibl S, O'Shaughnessy J, Untch M, Sikov WM, Rugo HS, McKee MD, Huober J, Golshan M et al (2018) Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol 19(4):497–509

    Article  CAS  Google Scholar 

  25. Faro R, Toyoda Y, McCully JD, Jagtap P, Szabo E, Virag L, Bianchi C, Levitsky S et al (2002) Myocardial protection by PJ34, a novel potent poly (ADP-ribose) synthetase inhibitor. Ann Thorac Surg 73(2):575–581

    Article  Google Scholar 

  26. Dasgupta A, Shields JE, Spencer HT (2012) Treatment of a solid tumor using engineered drug-resistant immunocompetent cells and cytotoxic chemotherapy. Hum Gene Ther 23(7):711–721

    Article  CAS  Google Scholar 

  27. Michelena J, Lezaja A, Teloni F, Schmid T, Imhof R, Altmeyer M (2018) Analysis of PARP inhibitor toxicity by multidimensional fluorescence microscopy reveals mechanisms of sensitivity and resistance. Nat Commun 9(1):2678. https://doi.org/10.1038/s41467-018-05031-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR (2015) Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 33(6):661–667

    Article  CAS  Google Scholar 

  29. Sharma A, Singh K, Almasan A (2012) Histone H2AX phosphorylation: a marker for DNA damage. In: Bjergbæk L (ed) DNA repair protocols. Humana Press, Totowa, NJ, pp. 613–626

    Chapter  Google Scholar 

  30. Mladenov E, Anachkova B, Tsaneva I (2006) Sub-nuclear localization of Rad51 in response to DNA damage. Genes Cells 11(5):513–524

    Article  CAS  Google Scholar 

  31. Hopkins TA, Shi Y, Rodriguez LE, Solomon LR, Donawho CK, DiGiammarino EL, Panchal SC, Wilsbacher JL et al (2015) Mechanistic dissection of PARP1 trapping and the impact on in vivo tolerability and efficacy of PARP inhibitors. Mol Cancer Res 13(11):1465–1477

    Article  CAS  Google Scholar 

  32. Narne P, Pandey V, Simhadri PK, Phanithi PB (2017) Poly(ADP-ribose)polymerase-1 hyperactivation in neurodegenerative diseases: the death knell tolls for neurons. Semin Cell Dev Biol 63:154–166

    Article  CAS  Google Scholar 

  33. Cardinale A, Paldino E, Giampà C, Bernardi G, Fusco FR (2015) PARP-1 inhibition is neuroprotective in the R6/2 mouse model of Huntington’s disease. PLoS One 10(8):e0134482

    Article  Google Scholar 

  34. Love S, Barber R, Wilcock G (1999) Increased poly (ADP-ribosyl) ation of nuclear proteins in Alzheimer's disease. Brain 122(2):247–253

    Article  Google Scholar 

  35. Mandir AS, Przedborski S, Jackson-Lewis V, Wang ZQ, Simbulan-Rosenthal CM, Smulson ME, Hoffman BE, Guastella DB et al (1999) Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A 96(10):5774–5779

    Article  CAS  Google Scholar 

  36. Martire S, Mosca L, d’Erme M (2015) PARP-1 involvement in neurodegeneration: a focus on Alzheimer’s and Parkinson’s diseases. Mech Ageing Dev 146-148:53–64

    Article  CAS  Google Scholar 

  37. Wang H, Shimoji M, Yu SW, Dawson TM, Dawson VL (2003) Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson’s disease. Ann N Y Acad Sci 991:132–139

    Article  CAS  Google Scholar 

  38. Verma P, Zhou Y, Cao Z, Deraska PV, Deb M, Arai E, Li W, Shao Y et al (2021) ALC1 links chromatin accessibility to PARP inhibitor response in homologous recombination-deficient cells. Nat Cell Biol 23(2):160–171

    Article  CAS  Google Scholar 

  39. Lengyel-Zhand Z, Ferrie JJ, Janssen B, Hsieh C-J, Graham T, Xu K-y, Haney CM, Lee VMY, Trojanowski JQ, Petersson EJ, Mach RH (2020) Synthesis and characterization of high affinity fluorogenic α-synuclein probes. Chem Commun.

Download references

Acknowledgements

SH-SY5Y-WT and SH-SY5Y-αSyn cells were a gift from Dr. Harry Ischiropoulos, University of Pennsylvania. IMR-5 cells were a gift from Dr. John Maris, University of Pennsylvania. The plasmid encoding the human αSyn sequence was a gift from Dr. James Petersson, University of Pennsylvania.

Funding

This research was supported by the Michael J. Fox Foundation (R.H.M.) and U19-NS110456 (R.H.M.) and supported in part by T32GM008076 (L.N.P.).

Author information

Authors and Affiliations

Authors

Contributions

L.N.P. designed the experiments presented in this study and performed all the cell/biochemical and microscopy-based experiments. Z.L.Z. helped produce all the purified proteins and fibrils used in this project. L.N.P. and Z.L.Z. prepared the manuscript. S.W.R. synthesized 10e and the other olaparib analogues described in this manuscript. Z.L.Z. and R.H.M provided support with experimental design.

Corresponding author

Correspondence to Robert H. Mach.

Ethics declarations

Consent to Participate/Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puentes, L.N., Lengyel-Zhand, Z., Reilly, S.W. et al. Evaluation of a Low-Toxicity PARP Inhibitor as a Neuroprotective Agent for Parkinson’s Disease. Mol Neurobiol 58, 3641–3652 (2021). https://doi.org/10.1007/s12035-021-02371-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02371-4

Keywords

Navigation