Skip to main content

Advertisement

Log in

Biofilm and Biocontrol Modulation of Paenibacillus sp. CCB36 by Supplementation with Zinc Oxide Nanoparticles and Chitosan Nanoparticles

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Endophytic bacteria with multi-trait plant beneficial features have applications to enhance agricultural productivity by supporting the plant growth, yield, and disease resistance. In this study, Paenibacillus sp. CCB36 was isolated from the rhizome of Curcuma caesia Roxb., and its biofilm formation and antifungal properties have been evaluated in the presence of nanoparticles. Chitosan nanoparticles (CNPs) were synthesized and characterized by UV–visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, high-resolution-transmission electron microscopic (HR-TEM) analysis, scanning electron microscopic (SEM) analysis, and dynamic light scattering (DLS). The effect of zinc oxide nanoparticles (ZnONPs) and CNPs on biofilm formation of Paenibacillus sp. CCB36 was evaluated by tissue culture plate assay. ZnONPs reduced its biofilm formation and was found to get modulated in the presence of CNPs as revealed by atomic force microscopy (AFM). Hence, CNPs were selected for further studies. Interestingly, biocontrol property of Paenibacillus sp. CCB36 against Rhizoctonia solani was also found to get enhanced when supplemented with chitosan nanoparticles. The results of the study indicate application of nanoparticles to improve colonization and active functioning of endophytic bacteria which can have significant application in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Agbodjato, N., Noumavo, P. A., Adjanohoun, A., Agbessi, L., & Baba-Moussa, L. (2016). Biotechnology Research International, 2016, 11.

    Article  Google Scholar 

  2. Ansari, F. A., & Ahmad, I. (2019). Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Scientific Reports, 9.

  3. Berg, G., Mahnert, A., & Moissl-Eichinger, C. (2014). Frontiers in Microbiology, 5, 15.

    PubMed  PubMed Central  Google Scholar 

  4. Bhattacharyya, A., Duraisamy, P., Govindarajan, M., Buhroo, A. A., & Prasad, R. (2016). Nano-biofungicides: Emerging trend in insect pest control. 307–319.

  5. Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Applied and Environment Microbiology, 71, 4951–4959.

    Article  CAS  Google Scholar 

  6. Deng, Q.-Y., Zhou, C.-R., & Luo, B.-H. (2008). Pharmaceutical Biology, 44, 336–342.

    Article  Google Scholar 

  7. Devi, H. P., Mazumder, P. B., & Devi, L. P. (2015). Toxicology Reports, 2, 423–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd_Allah, E. F., & Hashem, A. (2017). Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Frontiers in Microbiology, 8.

  9. Ek-Ramos, M. J., Gomez-Flores, R., Orozco-Flores, A. A., Rodríguez-Padilla, C., González-Ochoa, G., & Tamez-Guerra, P. (2019). Bioactive products from plant-endophytic gram-positive bacteria. Frontiers in Microbiology, 10.

  10. Fadiji, A. E., & Babalola, O. O. (2020). Frontiers in Bioengineering and Biotechnology, 8, 467.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology in agriculture: Which innovation potential does it have? Frontiers in Environmental Science, 4.

  12. Ghadi, A., Mahjoub, S., Tabandeh, F., & Talebnia, F. (2014). Caspian Journal of Internal Medicine, 5, 156–161.

    PubMed  PubMed Central  Google Scholar 

  13. Grover, M., Shah, K., Khullar, G., Gupta, J., & Behl, T. (2019). Journal of Pharmacy and Pharmacology, 71, 725–732.

    Article  CAS  PubMed  Google Scholar 

  14. Hassan, O., & Chang, T. (2017). Asian Journal of Plant Pathology, 11, 53–70.

    Article  Google Scholar 

  15. James, S. A., Powell, L. C., & Wright, C. J. (2016). In D. Dhanasekaran & N. Thajuddin (Eds.), Microbial biofilms - importance and applications. IntechOpen.

    Google Scholar 

  16. Jasim, B., Joseph, A. A., John, C. J., Mathew, J., & Radhakrishnan, E. K. (2013). 3 Biotech, 4, 197–204.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jimtha, J. C., Jishma, P., Arathy, G. B., Anisha, C., & Radhakrishnan, E. K. (2016). Journal of Soil Science and Plant Nutrition, 16, 578–590.

    CAS  Google Scholar 

  18. Kaur, R., Kaur, B., Suttee, A., & Kalsi, V. (2018). Asian Journal of Pharmaceutical and Clinical Research, 11, 94.

    Article  Google Scholar 

  19. Khare, E., Mishra, J., & Arora, N. K. (2018). Multifaceted interactions between endophytes and plant: Developments and prospects. Frontiers in Microbiology, 9.

  20. Lahiri, D., Nag, M., Sheikh, H. I., Sarkar, T., Edinur, H. A., Pati, S., & Ray, R. R. (2021). Frontiers in Microbiology, 12, 636588.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee, D.-S., & Je, J.-Y. (2013). Journal of Agricultural and Food Chemistry, 61, 6574–6579.

    Article  CAS  PubMed  Google Scholar 

  22. Marchiol, L. (2018). New visions in plant science. IntechOpen.

    Google Scholar 

  23. Mazaherinia, S., Astaraei, A. R., Fotovat, A., & Monshi, A. (2010). Nano iron oxide particles efficiency on Fe, Mn, Zn and Cu concentrations in wheat plant. World Applied Sciences Journal.

  24. Mazumder, P., & Devi, H. (2016). Pharmacognosy Research, 8, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mburu, S. W., Koskey, G., Njeru, E. M., & Maingi, J. M. (2021). AIMS Agriculture and Food, 6, 496–524.

    Article  Google Scholar 

  26. Mohamad, O. A. A., Li, L., Ma, J.-B., Hatab, S., Xu, L., Guo, J.-W., Rasulov, B. A., Liu, Y.-H., Hedlund, B. P,. & Li, W.-J. (2018). Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliaeFrontiers in Microbiology, 9.

  27. Nag, M., Lahiri, D., Sarkar, T., Ghosh, S., Dey, A., Edinur, H. A., Pati, S., & Ray, R. R. (2021). Frontiers in Chemistry, 9, 690590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Padda, K. P., Puri, A., & Chanway, C. P. (2017). Paenibacillus polymyxa: A prominent biofertilizer and biocontrol agent for sustainable agriculture, 165–191.

  29. Pati, S., Chatterji, A., Dash, B. P., Raveen Nelson, B., Sarkar, T., Shahimi, S., AtanEdinur, H., BintiAbd Manan, T. S., Jena, P., Mohanta, Y. K., & Acharya, D. (2020). Polymers, 12, 2361.

    Article  CAS  PubMed Central  Google Scholar 

  30. Pati, S., Sarkar, T., Sheikh, H. I., Bharadwaj, K. K., Mohapatra, P. K., Chatterji, A., Dash, B. P., Edinur, H. A., & Nelson, B. R. (2021). Frontiers in Marine Science, 8, 1–12.

    Article  Google Scholar 

  31. Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology, 8.

  32. Prasad, T. N. V. K. V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K. R., Sreeprasad, T. S., Sajanlal, P. R., & Pradeep, T. (2012). Journal of Plant Nutrition, 35, 905–927.

    Article  CAS  Google Scholar 

  33. Raja, S., Subhashini, P., & Thangaradjou, T. (2016). Mycology, 7, 112–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ray, S. D. (2011). Acta Poloniae Pharmaceutica, 68, 619–622.

    CAS  PubMed  Google Scholar 

  35. Roshmi, T., Anju, J., Rintu, T. V., Soniya, E. V., Jyothis, M., & Radhakrishnan, E. K. (2014). Brazilian Journal of Microbiology, 45, 1221–1227.

    Article  Google Scholar 

  36. Ryu, C.-M., Kim, J., Choi, O., Kim, S. H., & Park, C. S. (2006). Biological Control, 39, 282–289.

    Article  Google Scholar 

  37. Walker, D. I., Keevil, C. W., & Hatti Kaul, R. (2015). Low-concentration diffusible molecules affect the formation of biofilms by mixed marine communities. Cogent Biology, 1.

  38. Weselowski, B., Nathoo, N., Eastman, A. W., MacDonald, J., & Yuan, Z.-C. (2016). Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiology, 16.

  39. Xing, K., Zhu, X., Peng, X., & Qin, S. (2014). Agronomy for Sustainable Development, 35, 569–588.

    Article  Google Scholar 

  40. Zhang, F., Li, X.-L., Zhu, S.-J., Ojaghian, M. R., & Zhang, J.-Z. (2018). Biological Control, 127, 70–77.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Kerala State Council for Science, Technology and Environment (KSCSTE) under the KSCSTE-SRS, KSCSTE-KBC-YIPB, and also JAIVAM Project. The authors also acknowledge the Department of Science and Technology (DST) under DST PURSEII and Kerala State Plan Fund Project for the instrumentation facility. The authors also acknowledge the Director, Sophisticated Analytical Instrument Facility (DST-SAIF), School of Environmental Sciences, Mahatma Gandhi University, Kottayam, India, for providing atomic force microscope (AFM) facility and also acknowledge the Director, International and Interuniversity Centre for Nanoscience and Nanotechnology for the help and support for transmission electron microscopic (TEM) analysis and dynamic light scattering (DLS) facility and the Director, Center for Nanosciences, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India, for the scanning electron microscopic (SEM) analysis facility.

Author information

Authors and Affiliations

Authors

Contributions

Radhakrishnan Edayileveetil Krishnankutty contributed to the study conception and design. Experiments and analysis were performed by Jishma Panichikkal, Sreejith Sreekumaran, Ashitha Jose, Anju Kanjirakandi Ashokan, and Cimmiya Susan Baby. The first draft of the manuscript was written by Jishma Panichikkal. The manuscript was revised, and corrections were included by Radhakrishnan Edayileveetil Krishnankutty, Jishma Panichikkal, and Ashitha Jose. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Radhakrishnan Edayileveetil Krishnankutty.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 14.8 KB)

Supplementary file2 (PDF 21.8 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panichikkal, J., Jose, A., Sreekumaran, S. et al. Biofilm and Biocontrol Modulation of Paenibacillus sp. CCB36 by Supplementation with Zinc Oxide Nanoparticles and Chitosan Nanoparticles. Appl Biochem Biotechnol 194, 1606–1620 (2022). https://doi.org/10.1007/s12010-021-03710-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03710-w

Keywords

Navigation