Skip to main content
Log in

Effects of CdCl2 concentration on the structural, thermal and ionic conductivity properties of HPMC polymer electrolyte films

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The present study illustrates cadmium chloride (CdCl2)-doped hydroxypropyl methylcellulose (HPMC) polymer electrolyte films. Solution cast method is employed to prepare polymer electrolyte samples of HPMC complexed with various concentrations of CdCl2 (1–4 %, wt.%). Structural and thermal studies of these polymer samples were investigated using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). XRD results showed that the amorphous domains of HPMC polymer matrix were increased with increase in CdCl2 salt concentration. DSC results revealed that the presence of CdCl2 in the polymer matrix increases the melting temperature; however, it is observed that the heat of fusion (ΔH f ) is high for pure HPMC films. The variation in the film morphology was examined by scanning electron microscopy (SEM). Direct current (dc) conductivity was measured in the temperature range 313–383 K. The magnitude of electrical conductivity was found to be increased with increasing salt concentration and temperature. The activation energy region data (region I and region II) indicated the dominance of ion-type charge transport in these polymer electrolyte films. HPMC polymer electrolytes with 4 % CdCl2 salt concentration exhibit the least crystallinity and the highest conductivity 1.01 × 10−6 Scm−1 at 313 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armand MB (1993) J Solid State Ionics 9/10:745

    Article  Google Scholar 

  2. Papke BL, Ratner MA, Shriver DF (1992) J Electrochem Soc 129:1694

    Article  Google Scholar 

  3. Berthier C, Gorecki W, Miner M, Amand MB, Chabagno JM, Riguad P (1983) J Solid State Ionics 11:91

    Article  CAS  Google Scholar 

  4. Armand MB (1986) Annu Rev Mater Sci 16:245–261

    Article  CAS  Google Scholar 

  5. Chaubey A, Gerard M, Singhal R, Singh VS, Malhotra BD (2000) J Electrochim Acta 46:723

    Article  CAS  Google Scholar 

  6. Lascaud S, Perrier M, Vallee A, Besner S, Prud home J, Armand M (1994) J Macromol 27:7469

    Article  CAS  Google Scholar 

  7. Balaki Bhargav P, Madhu Mohan V, Sharma AK, Rao VVRN (2007) J Ionics 13(3):173–178

    Article  Google Scholar 

  8. Subramanya Kilarkaje V, Manjunatha S, Raghu MVN, Prasad A, Devendrappa H (2011) J Phys D: Appl Phys 44:105403

    Article  Google Scholar 

  9. Subramanya K, Raghu S, Devendrappa H (2012) AIP Conf Proc Vol., 1447 , 965

  10. Nanda Prakash MB, Manjunath A, Somashekar R (2013) J Adv Condens Matter Phys 35:1–6

    Article  Google Scholar 

  11. Rotta J, Minatti E, Barret PLM (2011) J Cienc Tecnol Aliment Campinas 31(2):450–455

    Article  Google Scholar 

  12. Honary S, Ebrahimi P, Emrani N (2010) J Pharma Bio Sci V1(2):1–8

  13. Hardy IJ, Cook WG, Melia CD (2006) J Pharma Bio Sci 311(1–2):26–32

    CAS  Google Scholar 

  14. Bruce PG, Vincent CA (1993) J Chem Soc Faraday Trans 89:3187–3203

    Article  CAS  Google Scholar 

  15. Colin, Durizot E (1994) J Mater Sci 9:8

    Google Scholar 

  16. Liu B, Xu GQ, Gan LM, Chew CH, Li WS, Shen ZX (2001) J Appl Phys 89:1059

    Article  CAS  Google Scholar 

  17. Yukoh S, Sumihiro S, Makoto O (2006) Int J Pharm 317(2):120–126

    Article  Google Scholar 

  18. Madhu Mohan V, Raja V, Sharma AK, Narasimha Rao VVRN (2004) J Mater Chem Phys 94:177

    Article  Google Scholar 

  19. Bhargav PB, Mohan VM, Sharma AK, Rao VVRN (2009) J Curr Appl Phys 9:165–171

    Article  Google Scholar 

  20. Malathi J, Kumaravadivel M, Brahmanandhan GM, Hema M, Baskaran R, Selvasekarapandian S (2010) J Non-Cryst Solids 356:2277–2281

    Article  CAS  Google Scholar 

  21. Hermans PH, Weidinger A (1961) J Macromol Chem 24:44

  22. Sangappa D et al (2008) J Nucl Inst Methods Phys Res 266:3975–3980

    Article  CAS  Google Scholar 

  23. Zhang S, Lee JY, Hong L (2004) J Power Sources 126(1–2):125–133

    Article  CAS  Google Scholar 

  24. Chu PP, Reddy MJ (2003) J Power Sources 115:288

    Article  CAS  Google Scholar 

  25. Karmakar A, Ghosh A (2011) J Nanoparticle Res 13:2989–2996

    Article  CAS  Google Scholar 

  26. Subba R, Sharma AK, Narasimha Rao VVR (2006) J Polym Sci 47:1318

    Google Scholar 

  27. HiranKumar G, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2005) J Power Sources 144:262

    Article  CAS  Google Scholar 

  28. Chakraborty G et al (2011) J Solid State Commun 151:754–758

    Article  CAS  Google Scholar 

  29. Janaki Rami Reddy T, Achari VBS, Sharma AK, Rao VVRN (2007) J Ionics 13:435–439

    Article  Google Scholar 

  30. Omed Gh A, Tahir DA, Ahmad SS, Ahmad HT (2013) IOSR-JAP 4:52–57

  31. Devendrappa H, Subba Rao UV, Ambika Prasad MVN (2006) J Power Sources 155(2):368

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge all the support and the useful discussion by Professor Srikantaiah, retired Scientist, BARC, Mumbai. Thanks to the technical staff at SID and Material Science Department, IISc, Bangalore for DSC and SEM analysis. We thank Grian Technologies Pvt. Limited, Bangalore for their support in electrical conductivity studies. A special thanks to Dr Shibu M Eappen, Scientist in charge, SAIF Cochin University of Science and Technology, Cochin, for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Sandhya Rani or J. Sannappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, N.S., Sannappa, J., Demappa, T. et al. Effects of CdCl2 concentration on the structural, thermal and ionic conductivity properties of HPMC polymer electrolyte films. Ionics 21, 133–140 (2015). https://doi.org/10.1007/s11581-014-1151-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1151-y

Keywords

Navigation