Skip to main content
Log in

Construction of smart inorganic nanoparticle-based ultrasound contrast agents and their biomedical applications

  • Review
  • Materials Science
  • Published:
Science Bulletin

Abstract

Ultrasound (US) imaging in combination with US contrast agents (UCAs) is a powerful tool in the modern biomedical field because of its high spatial resolution, easy access to patients and minimum invasiveness. The microbubble-based UCAs have been widely used in clinical diagnosis; however, they are only limited to the blood pool imaging and not applicable to the tissue-penetrated imaging due to their large particle size and structural instability. Inorganic nanoparticles (NPs), such as silica, gold and Fe x O y , featured with both satisfactory echogenic properties and structural stability have the potential to be used as a new generation of UCAs. In this review, we present the most recent progresses in the tailored construction of inorganic UCAs and their biomedical applications in the US imaging-involved fields. Firstly, the typical inorganic NPs with different structures including solid, hollow and multiple-layer forms will be comprehensively introduced in terms of their structure design, physicochemical property, US imaging mechanism and diverse applications; secondly, the recent progress in exploring the gas-generating inorganic NP system for US imaging purpose will be reviewed, and these intelligent UCAs are multifunctional for simultaneous US imaging and disease therapy; thirdly, several nanocomposite platforms newly constructed by combining inorganic UCAs with other functional components will be presented and discussed. These multifunctional NPs are capable of further enhancing the imaging resolution by providing more comprehensive anatomical information simultaneously. Last but not the least, the design criteria for developing promising UCAs to satisfy both clinical demands and optimized US imaging capability will be discussed and summarized in this review.

摘要

超声造影成像因其非侵入性、风险低、价格低和轻便快捷等优势,在肿瘤诊断方面得到了广泛的应用。伴随着分子影像技术的进步和发展,针对肿瘤的靶向超声造影剂的制备和应用成为了材料和医学界的研究热点。然而,由于粒径较大和结构稳定性差等因素,目前常用的微泡造影剂在体内循环和成像时间较短,同时难以渗透到肿瘤组织和细胞内部实现有效的肿瘤造影成像。针对以上问题,目前国际科学界开展了氧化硅、金和氧化铁等无机基质的纳米超声造影剂的制备和应用研究,力求在结构和成像性能等方面大幅度提高材料的超声造影性能。本综述主要从3个方面介绍无机纳米超声造影剂的研究进展:(1) 新型实心、空心和多壁结构无机SiO2纳米超声造影剂的制备、成像机理和诊断应用研究;(2) 新型相转变智能超声造影剂的合成和诊疗应用进展;(3) 与光声造影成像、磁性能和肿瘤靶向性能复合的几种代表性多功能超声造影剂的介绍,并着重总结目前国际上关于光热治疗和超声造影复合纳米材料的研究进展。此外,为了进一步提高无机超声造影剂的安全性和有效性,提出了材料设计和临床前研究的指导性思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Son S, Min HS, You DG et al (2014) Echogenic nanoparticles for ultrasound technologies: evolution from diagnostic imaging modality to multimodal theranostic agent. Nano Today 9:525–540

    Article  Google Scholar 

  2. Shapiro MG, Goodwill PW, Neogy A et al (2014) Biogenic gas nanostructures as ultrasonic molecular reporters. Nat Nanotechnol 9:311–316

    Article  Google Scholar 

  3. Feinstein SB, Tencate FJ, Zwehl W et al (1984) Two-dimensional contrast echocardiography. 1. In vitro development and quantitative-analysis of echo contrast agents. J Am Coll Cardiol 3:14–20

    Article  Google Scholar 

  4. Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3:527–532

    Article  Google Scholar 

  5. Schutt EG, Klein DH, Mattrey RM et al (2003) Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed 42:3218–3235

    Article  Google Scholar 

  6. Wilson SR, Burns PN (2010) Microbubble-enhanced US in body imaging: what role? Radiology 257:24–39

    Article  Google Scholar 

  7. Hu H, Zhou H, Du J et al (2011) Biocompatiable hollow silica microspheres as novel ultrasound contrast agents for in vivo imaging. J Mater Chem 21:6576–6583

    Article  Google Scholar 

  8. Ambrogio MW, Thomas CR, Zhao YL et al (2011) Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res 44:903–913

    Article  Google Scholar 

  9. Tan A, Yildirimer L, Rajadas J et al (2011) Quantum dots and carbon nanotubes in oncology: a review on emerging theranostic applications in nanomedicine. Nanomedicine 6:1101–1114

    Article  Google Scholar 

  10. Wang YQ, Chen LX (2011) Quantum dots, lighting up the research and development of nanomedicine. Nanomed Nanotechnol Biol Med 7:385–402

    Article  Google Scholar 

  11. Banerjee R, Katsenovich Y, Lagos L et al (2010) Nanomedicine: magnetic nanoparticles and their biomedical applications. Curr Med Chem 17:3120–3141

    Article  Google Scholar 

  12. Ma ZY, Xia HX, Liu YP et al (2013) Applications of gold nanorods in biomedical imaging and related fields. Chin Sci Bull 58:2530–2536

    Article  Google Scholar 

  13. Xu CX, Yang C, Gu BX et al (2013) Nanostructured ZnO for biosensing applications. Chin Sci Bull 58:2563–2566

    Article  Google Scholar 

  14. Montalti M, Prodi L, Rampazzo E et al (2014) Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem Soc Rev 43:4243–4268

    Article  Google Scholar 

  15. Burns AA, Vider J, Ow H et al (2009) Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett 9:442–448

    Article  Google Scholar 

  16. Chen ZZ, Ren XL, Tang FQ (2013) Optical detection of acetylcholine esterase based on CdTe quantum dots. Chin Sci Bull 58:2622–2627

    Article  Google Scholar 

  17. Yang P, Zhao FY, Ding J et al (2014) Bubble-in-bubble strategy for high-quality ultrasound imaging with a structure coupling effect. Chem Mat 26:2121–2127

    Article  Google Scholar 

  18. Ke HT, Wang JR, Tong S et al (2014) Gold nanoshelled liquid perfluorocarbon magnetic nanocapsules: a nanotheranostic platform for bimodal ultrasound/magnetic resonance imaging guided photothermal tumor ablation. Theranostics 4:12–23

    Article  Google Scholar 

  19. Shklyar TF, Toropova OA, Safronov AP et al (2010) Acoustic properties of metal oxides aqueous suspensions. Nanotechnol Russia 5:227–234

    Article  Google Scholar 

  20. Zagorchev L, Mulligan-Kehoe MJ (2009) Molecular imaging of vessels in mouse models of disease. Eur J Radiol 70:305–311

    Article  Google Scholar 

  21. Casciaro S, Conversano F, Ragusa A et al (2010) Optimal enhancement configuration of silica nanoparticles for ultrasound imaging and automatic detection at conventional diagnostic frequencies. Invest Radiol 45:715–724

    Article  Google Scholar 

  22. Lu J, Liong M, Li ZX et al (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6:1794–1805

    Article  Google Scholar 

  23. Shi JL, Chen Y, Chen HR (2013) Progress on the multifunctional mesoporous silica-based nanotheranostics. J Inorg Mater 28:1–11

    Article  Google Scholar 

  24. Rosenholm JM, Mamaeva V, Sahlgren C et al (2012) Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine 7:111–120

    Article  Google Scholar 

  25. Rigby SP, Fairhead M, van Der Walle CF (2008) Engineering silica particles as oral drug delivery vehicles. Curr Pharm Design 14:1821–1831

    Article  Google Scholar 

  26. Mahkam M (2011) Synthesis and characterization of pH-sensitive silica nanoparticles for oral-insulin delivery. Curr Drug Deliv 8:607–611

    Article  Google Scholar 

  27. Chiriaco F, Soloperto G, Greco A et al (2013) Magnetically-coated silica nanospheres for dual-mode imaging at low ultrasound frequency. World J Radiol 5:411–420

    Article  Google Scholar 

  28. Jokerst JV, Khademi C, Gambhir SS (2013) Intracellular aggregation of multimodal silica nanoparticles for ultrasound-guided stem cell implantation. Sci Transl Med 5:177ra35

    Google Scholar 

  29. Foroutan F, Jokerst JV, Gambhir SS et al (2015) Sol–gel synthesis and electrospraying of biodegradable (P2O5)55–(CaO)30–(Na2O)15 glass nanospheres as a transient contrast agent for ultrasound stem cell imaging. ACS Nano 9:1868–1877

    Article  Google Scholar 

  30. Lin PL, Eckersley RJ, Hall EAH (2009) Ultrabubble: a laminated ultrasound contrast agent with narrow size range. Adv Mater 21:3949–3952

    Article  Google Scholar 

  31. Martinez HP, Kono Y, Blair SL et al (2010) Hard shell gas-filled contrast enhancement particles for colour Doppler ultrasound imaging of tumors. MedChemComm 1:266–270

    Article  Google Scholar 

  32. Zhu YF, Shi JL, Shen WH et al (2005) Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew Chem Int Ed 44:5083–5087

    Article  Google Scholar 

  33. Zhang K, Chen HR, Zheng YY et al (2012) A facile in situ hydrophobic layer protected selective etching strategy for the synchronous synthesis/modification of hollow or rattle-type silica nanoconstructs. J Mater Chem 22:12553–12561

    Article  Google Scholar 

  34. Qian XQ, Wang WP, Kong WT et al (2014) Organic-inorganic hybrid hollow mesoporous organosilica nanoparticles for efficient ultrasound-based imaging and controlled drug release. J Nanomater. doi:10.1155/2014/972475

    Google Scholar 

  35. Zhang K, Chen H, Guo X et al (2015) Double-scattering/reflection in a single nanoparticle for intensified ultrasound imaging. Sci Rep 5:8766

    Article  Google Scholar 

  36. Yang F, Hu SL, Zhang Y et al (2012) A hydrogen peroxide-responsive O2 nanogenerator for ultrasound and magnetic-resonance dual modality imaging. Adv Mater 24:5205–5211

    Article  Google Scholar 

  37. Prasad P, Gordijo CR, Abbasi AZ et al (2014) Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 8:3202–3212

    Article  Google Scholar 

  38. Gordijo CR, Abbasi AZ, Amini MA et al (2015) Design of hybrid MnO2-polymer-lipid nanoparticles with tunable oxygen generation rates and tumor accumulation for cancer treatment. Adv Funct Mater 25:1858–1872

    Article  Google Scholar 

  39. Min KH, Min HS, Lee HJ et al (2015) pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano 9:134–145

    Article  Google Scholar 

  40. Chung MF, Chen KJ, Liang HF et al (2012) A liposomal system capable of generating CO2 bubbles to induce transient cavitation, lysosomal rupturing, and cell necrosis. Angew Chem Int Ed 51:10089–10093

    Article  Google Scholar 

  41. Wang X, Chen HR, Chen Y et al (2012) Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient high intensity focused ultrasound (HIFU). Adv Mater 24:785–791

    Article  Google Scholar 

  42. Wang X, Chen H, Zhang K et al (2014) An intelligent nanotheranostic agent for targeting, redox-responsive ultrasound imaging, and imaging-guided high-intensity focused ultrasound synergistic therapy. Small 10:1403–1411

    Article  Google Scholar 

  43. Zhang K, Chen H, Li F et al (2014) A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery. Biomaterials 35:5875–5885

    Article  Google Scholar 

  44. Huynh E, Leung BYC, Helfield BL et al (2015) In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol 10:325–332

    Article  Google Scholar 

  45. Zhang JC, Qiao ZY, Yang PP et al (2015) Recent advances in near-infrared absorption nanomaterials as photoacoustic contrast agents for biomedical imaging. Chin J Chem 33:35–52

    Article  Google Scholar 

  46. Wang PH, Liu HL, Hsu PH et al (2012) Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model. J Biomed Opt 17:061222

    Article  Google Scholar 

  47. Agarwal A, Huang SW, O’donnell M et al (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102:064701

    Article  Google Scholar 

  48. Ku G, Zhou M, Song SL et al (2012) Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 6:7489–7496

    Article  Google Scholar 

  49. Patel MA, Yang H, Chiu PL et al (2013) Direct production of graphene nanosheets for near infrared photoacoustic imaging. ACS Nano 7:8147–8157

    Article  Google Scholar 

  50. Zhang HF, Maslov K, Stoica G et al (2006) Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol 24:848–851

    Article  Google Scholar 

  51. Wang YH, Liao AH, Chen JH et al (2012) Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy. J Biomed Opt 17:045001

    Article  Google Scholar 

  52. Wilson K, Homan K, Emelianov S (2012) Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun 3:618

    Article  Google Scholar 

  53. Mehrmohammadi M, Qu M, Ma LL et al (2011) Pulsed magneto-motive ultrasound imaging to detect intracellular accumulation of magnetic nanoparticles. Nanotechnology 22:415105

    Article  Google Scholar 

  54. Pope AG, Wu GT, Mcwhorter FY et al (2013) Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound. Phys Med Biol 58:7277–7290

    Article  Google Scholar 

  55. Mehrmohammadi M, Shin TH, Qu M et al (2013) In vivo pulsed magneto-motive ultrasound imaging using high-performance magnetoactive contrast nanoagents. Nanoscale 5:11179–11186

    Article  Google Scholar 

  56. Dong WJ, Li YS, Niu DC et al (2011) Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv Mater 23:5392–5397

    Article  Google Scholar 

  57. Niu DC, Wang X, Li YS et al (2013) Facile synthesis of magnetite/perfluorocarbon co-loaded organic/inorganic hybrid vesicles for dual-modality ultrasound/magnetic resonance imaging and imaging-guided high-intensity focused ultrasound ablation. Adv Mater 25:2686–2692

    Article  Google Scholar 

  58. Milgroom A, Intrator M, Madhavan K et al (2014) Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent. Colloid Surf B Biointerfaces 116:652–657

    Article  Google Scholar 

  59. An L, Hu H, Du J et al (2014) Paramagnetic hollow silica nanospheres for in vivo targeted ultrasound and magnetic resonance imaging. Biomaterials 35:5381–5392

    Article  Google Scholar 

  60. Sundarraj S, Thangam R, Sujitha MV et al (2014) Ligand-conjugated mesoporous silica nanorattles based on enzyme targeted prodrug delivery system for effective lung cancer therapy. Toxicol Appl Pharmacol 275:232–243

    Article  Google Scholar 

  61. Huang XH, El-Sayed IH, Qian W et al (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  Google Scholar 

  62. Xiao ZY (2014) CuS nanoparticles: clinically favorable materials for photothermal applications? Nanomedicine 9:373–375

    Article  Google Scholar 

  63. Shen S, Tang HY, Zhang XT et al (2013) Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 34:3150–3158

    Article  Google Scholar 

  64. Ma M, Chen HR, Chen Y et al (2012) Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 33:989–998

    Article  Google Scholar 

  65. Ke HT, Wang JR, Dai ZF et al (2011) Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy. Angew Chem Int Ed 50:3017–3021

    Article  Google Scholar 

  66. Guo CX, Jin YS, Dai ZF (2014) Multifunctional ultrasound contrast agents for imaging guided photothermal therapy. Bioconjugate Chem 25:840–854

    Article  Google Scholar 

  67. Mou J, Chen Y, Ma M et al (2015) Facile synthesis of liposome/Cu2−x S-based nanocomposite for multimodal imaging and photothermal therapy. Sci China Mater 58:294–301

    Article  Google Scholar 

  68. Cai X, Jia X, Gao W et al (2015) A versatile nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy. Adv Funct Mater. doi:10.1002/adfm.201403991

    Google Scholar 

  69. Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9:291–310

    Google Scholar 

  70. Chen Y, Chen HR, Shi JL (2014) Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silica-etching chemistry: principles, synthesis, and applications. Acc Chem Res 47:125–137

    Article  Google Scholar 

  71. Mitchell KKP, Liberman A, Kummel AC et al (2012) Iron(III)-doped, silica nanoshells: a biodegradable form of silica. J Am Chem Soc 134:13997–14003

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by China National Funds for Distinguished Young Scientists (51225202), the National Natural Science Foundation of China (51402329), Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures (SKL201404) and Shanghai Excellent Academic Leaders Program (14XD1403800).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hangrong Chen or Jianlin Shi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Chen, H. & Shi, J. Construction of smart inorganic nanoparticle-based ultrasound contrast agents and their biomedical applications. Sci. Bull. 60, 1170–1183 (2015). https://doi.org/10.1007/s11434-015-0829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0829-5

Keywords

Navigation