Skip to main content
Log in

Facile synthesis of liposome/Cu2−x S-based nanocomposite for multimodal imaging and photothermal therapy

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

A kind of multifunctional perfluoropentane (PFP) and ultrasmall Cu2−xS nanodots (u-Cu2−xS NDs) co-incorporated liposome (PFP@ u-Cu2−xS NDs@liposome) nanocomposite has been facilely and successfully synthesized for enhanced ultrasound/infrared thermal/photoacoustic multimodal imaging and photothermal therapy upon near infrared (NIR) laser irradiation. Such a liposome-based nanocomposite possesses a number of advantages, such as high dispersity and stability, excellent biocompatibility, small particle size (<100 nm), well-defined core/shell structure, strong NIR absorption and photo-triggered vaporization of PFP, etc. The detailed in vitro investigations demonstrate that the as-synthesized PFP@ u-Cu2−xS NDs@ liposome nanocomposite is capable of enhancing the contrasts of ultrasound/infrared thermal/photoacoustic multimodal imaging, and substantially improving the photothermal therapeutic efficacy. This novel liposome-based theranostic nanoplatform shows great potentials in the future cancer diagnosis and therapy.

摘要

包裹氟碳化合物的脂质体已被广泛用作超声成像造影剂; 而硫化铜由于具有表面等离子体共振效应在近红外区域具有强光学吸收特性, 可以同时作为一种性能优异的近红外热/光声成像造影剂和光热治疗剂. 本文以有机脂质体为载体, 同时包裹氟碳化合物和硫化铜, 在近红外激光照射下, 硫化铜吸收光能将其转化为热能, 达到氟碳化合物的相变温度时使氟碳化合物 由液态变为气态, 产生的气泡可增强超声成像造影能力, 从而构建了单一波长激光诱导的超声/近红外热/光声多模式成像引导下的光热治疗, 极大提高了癌症治疗的安全性和治疗效率. 体外实验结果表明该有机无机复合物不仅能克服单纯有机脂质体的不稳定性等缺点, 而且具有显著增强的多模式成像造影能力和优异的光热治疗效果, 具有重要的临床应用前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA-Cancer J Clin, 2014, 64: 9–29

    Article  Google Scholar 

  2. Fass L. Imaging and cancer: a review. Mol Oncol, 2008, 2: 115–152

    Article  Google Scholar 

  3. Brody H. Medical imaging. Nature, 2013, 502: S81

    Article  Google Scholar 

  4. Glasspool RM, Evans TRJ. Clinical imaging of cancer metastasis. Eur J Cancer, 2000, 36: 1661–1670

    Article  Google Scholar 

  5. Manning MR, Cetas TC, Miller RC, et al. Clinical hyperthermia: results of a phase I trial employing hyperthermia alone or in combination with external beam or interstitial radiotherapy. Cancer, 1982, 49: 205–216

    Article  Google Scholar 

  6. D’Amico AV, Whittington R, Malkowicz S, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA, 1998, 280: 969–974

    Article  Google Scholar 

  7. Nelson H, Petrelli N, Carlin A, et al. Guidelines 2000 for colon and rectal cancer surgery. J Natl Cancer Inst, 2001, 93: 583–596

    Article  Google Scholar 

  8. Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet, 2002, 359: 1011–1018

    Article  Google Scholar 

  9. Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst, 1998, 90: 889–905

    Article  Google Scholar 

  10. Huang X, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc, 2006, 128: 2115–2120

    Article  Google Scholar 

  11. Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res, 2008, 41: 1842–1851

    Article  Google Scholar 

  12. Gobin AM, Lee MH, Halas NJ, et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett, 2007, 7: 1929–1934

    Article  Google Scholar 

  13. Loo C, Lowery A, Halas N, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett, 2005, 5: 709–711

    Article  Google Scholar 

  14. Huang Y, He S, Cao W, et al. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale, 2012, 4: 6135–6149

    Article  Google Scholar 

  15. Yang K, Hu L, Ma X, et al. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater, 2012, 24: 1868–1872

    Article  Google Scholar 

  16. Zhou M, Zhang R, Huang M, et al. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J Am Chem Soc, 2010, 132: 15351–15358

    Article  Google Scholar 

  17. Jin Y, Li Y, Ma X, et al. Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials, 2014, 35: 5795–5804

    Article  Google Scholar 

  18. Deshpande N, Needles A, Willmann JK. Molecular ultrasound imaging: current status and future directions. Clin Radiol, 2010, 65: 567–581

    Article  Google Scholar 

  19. Pignoli P, Tremoli E, Poli A, et al. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation, 1986, 74: 1399–406

    Article  Google Scholar 

  20. Fenster A, Downey DB. 3-D ultrasound imaging: a review. Eng Med Biol, IEEE, 1996, 15: 41–51

    Article  Google Scholar 

  21. Herment A, Guglielmi JP, Dumee P, et al. Limitations of ultrasound imaging and image restoration. Ultrasonics, 1987, 25: 267–273

    Article  Google Scholar 

  22. Sanchis-Sanchez E, Vergara-Hernandez C, Cibrian RM, et al. Infrared thermal imaging in the diagnosis of musculoskeletal injuries: a systematic review and meta-analysis. AJR Am J Roentgenol, 2014, 203: 875–882

    Article  Google Scholar 

  23. Ring EF, Ammer K. Infrared thermal imaging in medicine. Physiol Meas, 2012, 33: R33–46

    Article  Google Scholar 

  24. Lahiri BB, Bagavathiappan S, Jayakumar T, et al. Medical applications of infrared thermography: a review. Infrared Phys Technol, 2012, 55: 221–235

    Article  Google Scholar 

  25. Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 2012, 335: 1458–1462

    Article  Google Scholar 

  26. Wang X, Pang Y, Ku G, et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol, 2003, 21: 803–806

    Article  Google Scholar 

  27. Beard P. Biomedical photoacoustic imaging. Interface Focus, 2011, 1: 602–631

    Article  Google Scholar 

  28. Xu M, Wang LV. Photoacoustic imaging in biomedicine. Rev Sci Instrum, 2006, 77: 041101

    Article  Google Scholar 

  29. Martina MS, Fortin JP, Ménager C, et al. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc, 2005, 127: 10676–10685

    Article  Google Scholar 

  30. Marie H, Lemaire L, Franconi F, et al. Superparamagnetic liposomes for MRI monitoring and external magnetic field-induced selective targeting of malignant brain tumors. Adv Funct Mater, 2015, 8: 1258–1269

    Article  Google Scholar 

  31. Lozano N, Al-Jamal WT, Taruttis A, et al. Liposome-gold nanorod hybrids for high-resolution visualization deep in tissues. J Am Chem Soc, 2012, 134: 13256–13258

    Article  Google Scholar 

  32. Langereis S, Keupp J, van Velthoven JLJ, et al. A temperature-sensitive liposomal 1H CEST and 19F contrast agent for MR image-guided drug delivery. J Am Chem Soc, 2009, 131: 1380–1381

    Article  Google Scholar 

  33. Hagisawa K, Nishioka T, Suzuki R, et al. Enhancement of ultrasonic thrombus imaging using novel liposomal bubbles targeting activated platelet glycoprotein IIb/IIIa complex-in vitro and in vivo study. Int J Cardiol, 152: 202–206

  34. Hagisawa K, Nishioka T, Suzuki R, et al. Thrombus-targeted perfluorocarbon-containing liposomal bubbles for enhancement of ultrasonic thrombolysis: in vitro and in vivo study. J Thromb Haemost JTH, 2013, 11: 1565–1573

    Article  Google Scholar 

  35. Strohm E, Rui M, Gorelikov I, et al. Vaporization of perfluorocarbon droplets using optical irradiation. Biomed Opt Express, 2011, 2: 1432–1442

    Article  Google Scholar 

  36. Lindner JR. Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discovery, 2004, 3: 527–533

    Article  Google Scholar 

  37. Wilson K, Homan K, Emelianov S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun, 2012, 3: 618

    Article  Google Scholar 

  38. Strohm E, Rui M, Gorelikov I, et al. Vaporization of perfluorocarbon droplets using optical irradiation. Biomed Opts express, 2011, 2: 1432–1442

    Article  Google Scholar 

  39. Hannah AS, VanderLaan D, Chen YS, et al. Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm. Biomed Opt Express, 2014, 5: 3042–3052

    Article  Google Scholar 

  40. Hannah A, Luke G, Wilson K, et al. Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging. ACS Nano, 2013, 8: 250–259

    Article  Google Scholar 

  41. Ma M, Xu H, Chen H, et al. A drug-perfluorocarbon nanoemulsion with an ultrathin silica coating for the synergistic effect of chemotherapy and ablation by high-intensity focused ultrasound. Adv Mater, 2014, 26: 7378–7385

    Article  Google Scholar 

  42. Zhou Y, Wang Z, Chen Y, et al. Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv Mater, 2013, 25: 4123–4130

    Article  Google Scholar 

  43. Sun Y, Wang Y, Niu C, et al. Laser-activatible PLGA microparticles for image-guided cancer therapy in vivo. Adv Funct Mater, 2014, 24: 7674–7680

    Article  Google Scholar 

  44. Luther JM, Jain PK, Ewers T, et al. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat Mater, 2011, 10: 361–366

    Article  Google Scholar 

  45. Wei T, Liu Y, Dong W, et al. Surface-dependent localized surface plasmon resonances in CuS nanodisks. ACS Appl Mater Interfaces, 2013, 5: 10473–10477

    Article  Google Scholar 

  46. Liu X, Swihart MT. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem Soc Rev, 2014, 43: 3908–3920

    Article  Google Scholar 

  47. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol, 1965, 13: 238–258

    Article  Google Scholar 

  48. Mou J, Li P, Liu C, et al. Ultrasmall Cu2−x S nanodots for highly efficient photoacoustic imaging-guided photothermal therapy. Small, doi: 10.1002/smll.201403249

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hangrong Chen or Jianlin Shi.

Additional information

Juan Mou received her BSc degree at China University of Geosciences (Wuhan) (2007). She is now a PhD candidate at Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS). Her research interest includes the design, synthesis and biomedical applications of novel photothermal and photodynamic therapy materials.

Hangrong Chen received her PhD degree in SICCAS (2001). She is now a professor of SICCAS. Her research areas include the synthesis of mesoporous materials, multifunctional inorganic biomedical nanomaterials, and novel environmental catalytic materials. She has published more than 150 scientific papers which have been cited more than 4600 times by other scientists with an h-index of 38 (2014).

Jianlin Shi received his PhD degree in SICCAS (1989). He is now a professor of SICCAS. His research areas include the synthesis of mesoporous materials, mesoporous-based nano-composites, and their catalytic, biomedical and optical applications. He has published more than 300 scientific papers which have been cited more than 12,000 times by other scientists with an h-index of 59 (2014).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, J., Chen, Y., Ma, M. et al. Facile synthesis of liposome/Cu2−x S-based nanocomposite for multimodal imaging and photothermal therapy. Sci. China Mater. 58, 294–301 (2015). https://doi.org/10.1007/s40843-015-0044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-015-0044-3

Keywords

Navigation