Skip to main content
Log in

A latest review on the application of microcosm model in environmental research

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microcosms are used experimentally to simulate ecosystems. This technology has received increasing attention and is widely used for environmental research. This review briefly introduces the origin and development of microcosm theory, summarizes classification and applications of microcosms across decades, and describes the advantages and limitations of microcosm technology in comparison with other methods. Finally, trends in the development of microcosm models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

This is a review paper and based on the previous published papers. Table data was generated based on the papers cited and used in the review papers. Figures were redrawn and properly acknowledged.

References

  • Ahmad M, Yang Q, Zhang Y, Ling J, Sajjad W, Qi S, Zhou W, Zhang Y, Lin X, Zhang Y, Dong J (2019) The distinct response of phenanthrene enriched bacterial consortia to different PAHs and their degradation potential: a mangrove sediment microcosm study. J Hazard Mater 380:120863

    Article  CAS  Google Scholar 

  • Ahmed N, Amel H, Mohamed A, Badreddine B, Ibtihel S, Mohamed D, Abdel H, Lamjed M, Ezzeddine M, Hamouda B, Fehmi B (2020) “Chronic ecotoxicity of ciprofloxacin exposure on taxonomic diversity of a meiobenthic nematode community in microcosm experiments.” J King Saud Univ - Sci 32(2):1470–1475.

  • Ardestani MM, Šustr V, Hnilička F and Frouz J (2020). “Food consumption of the cockroach species Blaptica dubia Serville (Blattodea: Blaberidae) using three leaf litter types in a microcosm design.” Applied Soil Ecology 150:103460

  • Ardón M, Helton AM, Bernhardt ES (2018) Salinity effects on greenhouse gas emissions from wetland soils are contingent upon hydrologic setting: a microcosm experiment. Biogeochemistry 140(2):217–232

    Article  Google Scholar 

  • Bidja Abena MT, Sodbaatar N, Li T, Damdinsuren N, Choidash B, Zhong W (2019) Crude Oil Biodegradation by Newly Isolated Bacterial Strains and Their Consortium Under Soil Microcosm Experiment. Appl Biochem Biotechnol 189(4):1223–1244

    Article  CAS  Google Scholar 

  • Bonanomi G, Senatore M, Migliozzi A, De Marco A, Pintimalli A, Lanzotti V, Mazzoleni S (2015) Decomposition of submerged plant litter in a Mediterranean reservoir: A microcosm study. Aquat Bot 120:169–177

    Article  CAS  Google Scholar 

  • Buessecker S, Tylor K, Nye J, Holbert KE, Urquiza Muñoz JD, Glass JB, Hartnett HE, Cadillo-Quiroz H (2019) Effects of sterilization techniques on chemodenitrification and N<sub>2</sub>O production in tropical peat soil microcosms. Biogeosciences 16(23):4601–4612

    Article  CAS  Google Scholar 

  • Byun C, Kim S-Y, Kang H (2020) Elevated concentrations of CO2 and nitrogen alter DOC release and soil phenolic content in wetland microcosms. Écoscience 27(2):119–126

    Article  Google Scholar 

  • Carranza CS, Regñicoli JP, Aluffi ME, Benito N, Chiacchiera SM, Barberis CL, Magnoli CE (2019) Glyphosate in vitro removal and tolerance by Aspergillus oryzae in soil microcosms. Int J Environ Sci Technol 16(12):7673–7682

    Article  CAS  Google Scholar 

  • Chen H, Yan L, Zhao J, Yang B, Huang G, Shi W, Hou L, Zha J, Luo Y, Mu J, Dong W, Ying GG, Xie L (2019) The role of the freshwater oligochaete Limnodrilus hoffmeisteri in the distribution of Se in a water/sediment microcosm. Sci Total Environ 687:1098–1106

    Article  CAS  Google Scholar 

  • Chi J, Yang Q (2012) “Removal and Distribution of Phthalate Acid Esters in Potamogeton crispus L. Microcosm of Haihe River.” Environ. Sci 33(5):1570–1574

  • Dong X, Rao D, Tian L, Wang Q, Yang K (2020) A slurry microcosm study on the interaction between antibiotics and soil bacterial community. Heliyon 6(2):e03348

    Article  Google Scholar 

  • Du X, Zhu N, Xia X, Xu X (2001) “The theory of microcosm and its application in ecotoxicology.” Acta Ecol Sin 21(10):1726-1733

  • Du J, Qv M, Zhang Y, Cui M, Zhang H (2020a) Simulated sulfuric and nitric acid rain inhibits leaf breakdown in streams: A microcosm study with artificial reconstituted fresh water. Ecotoxicol Environ Saf 196:110535

    Article  CAS  Google Scholar 

  • Du Y, Luo B, Han W, Duan Y, Yu C, Wang M, Ge Y, Chang J (2020b) Increasing plant diversity offsets the influence of coarse sand on ecosystem services in microcosms of constructed wetlands. Environ Sci Pollut Res 27(27):34398–34411

    Article  CAS  Google Scholar 

  • Durban N, Rafrafi Y, Rizoulis A, Albrecht A, Robinet J-C, Lloyd JR, Bertron A, Erable B (2018) Nitrate and nitrite reduction at high pH in a cementitious environment by a microbial microcosm. Int Biodeterior Biodegradation 134:93–102

    Article  CAS  Google Scholar 

  • Enya O, Heaney N, Iniama G, Lin C (2020) Effects of heavy metals on organic matter decomposition in inundated soils: Microcosm experiment and field examination. Sci Total Environ 724:138223

    Article  CAS  Google Scholar 

  • Fettweis A, De Schamphelaere K, Smolders E (2018) Zinc toxicity toDaphnia magnain a two-species microcosm can be predicted from single-species test data: The effects of phosphorus supply and pH. Environ Toxicol Chem 37(8):2153–2164

    Article  CAS  Google Scholar 

  • Fischer JR, MacQuarrie GR, Malven M, Song Z, Rogan G (2020) Dissipation of DvSnf7 RNA from Late-Season Maize Tissue in Aquatic Microcosms. Environ Toxicol Chem 39(5):1032–1040

    Article  CAS  Google Scholar 

  • Fu C, Yu X, Xiang GS (2006) Effect of submerged plants on nutrient removal in model aquatic ecosystem. Environ Poll Control 28(10):753–756

  • Fu Q, Xi R, Zhu J, Hu H, Xing Z, Zuo J (2020) The relative contribution of ammonia oxidizing bacteria and archaea to N2O emission from two paddy soils with different fertilizer N sources: A microcosm study. Geoderma 375:114486

    Article  CAS  Google Scholar 

  • Galgani L, Engel A, Rossi C, Donati A, Loiselle SA (2018) Polystyrene microplastics increase microbial release of marine Chromophoric Dissolved Organic Matter in microcosm experiments. Sci Rep 8(1):14635

    Article  Google Scholar 

  • Gao H, Hua C, Tong M (2018). “Impact of Dinophysis acuminata Feeding Mesodinium rubrum on Nutrient Dynamics and Bacterial Composition in a Microcosm.” Toxins 10(11):443

  • Geng CM (2015) The risk assessment of butachlor and chiorpyrifos on plankton in aquatic ecosystem. J Zhejiang Univ 4:1–101

  • Gerritse J, Leslie HA, de Tender CA, Devriese LI, Vethaak AD (2020) Fragmentation of plastic objects in a laboratory seawater microcosm. Sci Rep 10(1):10945

    Article  CAS  Google Scholar 

  • Guo X, Liu M, Zhong H, Li P, Zhang C, Wei D, Zhao T (2020a) Responses of the growth and physiological characteristics of Myriophyllum aquaticum to coexisting tetracyclines and copper in constructed wetland microcosms. Environ Pollut 261:114204

    Article  CAS  Google Scholar 

  • Guo W, Cecchetti AR, Yue W, Qi Z, Sedlak DL (2020b) Sulfur Cycle in a Wetland Microcosm: Extended 34S-Stable Isotope Analysis and Mass Balance. Environ Sci Technol

  • Haanes H, Hansen EL, Hevroy TH, Jensen LK, Gjelsvik R, Jaworska A, Bradshaw C (2020) Realism and usefulness of multispecies experiment designs with regard to application in radioecology: A review. Sci Total Environ 718:134485

    Article  CAS  Google Scholar 

  • Hamdan HZ, Salam DA (2020) Microbial community evolution during the aerobic biodegradation of petroleum hydrocarbons in marine sediment microcosms: Effect of biostimulation and seasonal variations. Environ Pollut 265(Pt B):114858

    Article  CAS  Google Scholar 

  • He Q, Zhang D, Main K, Feng C, Ergas SJ (2018) Biological denitrification in marine aquaculture systems: A multiple electron donor microcosm study. Bioresour Technol 263:340–349

    Article  CAS  Google Scholar 

  • Ho A, Mo Y, Lee HJ, Jia Z, Sauheitl L, Horn MA (2018) Effect of salt stress on aerobic methane oxidation and associated methanotrophs; a microcosm study of a natural community from a non-saline environment. Soil Biol Biochem 125:210–214

    Article  CAS  Google Scholar 

  • Hoss S, Roessink I, Brock TCM, Traunspurger W (2020) Response of a nematode community to the fungicide fludioxonil in sediments of outdoor freshwater microcosms compared to a single species toxicity test. Sci Total Environ 710:135627

    Article  CAS  Google Scholar 

  • Işık G, Saz Ç, Türker OC, Yakar A and Türe C (2020). “Boron removal with microcosm constructed wetlands (MCWs) with Carex divisa for treating contaminated river water.” Arab J Geosci 13(13):541

  • Issa S, Ciesielski TM, Mikkelsen O, Einum S, Jaspers VLB (2020) Biofilms grown in aquatic microcosms affect mercury and selenium accumulation in Daphnia. Ecotoxicology 29(4):485–492

    Article  CAS  Google Scholar 

  • Kitagami Y, Matsuda Y (2020) Temperature changes affect multi-trophic interactions among pines, mycorrhizal fungi, and soil nematodes in a microcosm experiment. Pedobiologia 78:150595

    Article  Google Scholar 

  • Kumar S, Nand S, Dubey D, Pratap B, Dutta V (2020) Variation in extracellular enzyme activities and their influence on the performance of surface-flow constructed wetland microcosms (CWMs). Chemosphere 251:126377

    Article  CAS  Google Scholar 

  • Liang H, Chen Z, Qu F, Tian J, Li G (2010) “Regression equations between algae propagation and physico-chemical factors under microcosm environment.” J Harbin Inst Technol 42(6):41–844

  • Li C, Ma Z, Qiao S, Liu J, Chai B (2018) “Analysis of driving forces underlying the structure of fungal community in temperate forest soils based on microcosm experiments.” Ecol Environ 27(5):811–817

  • Li X, Miao Y, Xin L, Rui W, Yuting S, Yue S (2018a) Study on the nutrient changes of landscape lakes based on microcosm experiment. J. Southwest Minzu Univ. (Nat. Sci.) 44(1):40–51

  • Li ZX., Zhang JY, Liu FG, Wu XH, Liu C (2018b). “Establishment of the aquatic microcosm and its application.” BJ Water 4:37–41

  • Li Z, Zhao Y, Xu X, Han R, Wang M, Wang G (2018c) Migration and transformation of dissolved carbon during accumulated cyanobacteria decomposition in shallow eutrophic lakes: a simulated microcosm study. PeerJ 6(e5922):e5922

    Article  Google Scholar 

  • Li M, Sun L, Song X (2020a) Carbon sources derived from maize cobs enhanced nitrogen removal in saline constructed wetland microcosms treating mariculture effluents under greenhouse condition. Chemosphere 243:125342

    Article  CAS  Google Scholar 

  • Li Y, Zhang H, Rashid A, Hu A, Xin K, Li H, Adyari B, Wang Y, Yu CP, Sun Q (2020b) Bisphenol A attenuation in natural microcosm: Contribution of ecological components and identification of transformation pathways through stable isotope tracing. J Hazard Mater 385:121584

    Article  CAS  Google Scholar 

  • Liang Y, Zhu H, Bañuelos G, Xu Y, Yan B, Cheng X (2018) Preliminary study on the dynamics of heavy metals in saline wastewater treated in constructed wetland mesocosms or microcosms filled with porous slag. Environ Sci Pollut Res 26(33):33804–33815

    Article  Google Scholar 

  • Liu D, Zhang SH, Zhang Q, Xu HZ, Cheng J, Liu JN, Yao C, Shi LL (2016). “Fate and Transfer Dynamics of OP in a Simulated Micro-cosmos System.” Environ Sci Technol 39(11): 10-14.

  • Liu F, Liu Y, Zhao Y, Shen J, Zhu G (2013). "Indoor microcosms study on ecological effects of rice paddy applied with chlorpyrifos on zooplankton in south China.” Chinese J Pest Sci 15(2): 198-203.

  • Liu J, Wang L, Liu J, Lili S, Chen Y, Shen S (2015) A microcosm study compared to the species sensitivity distribution approach: A case study with the copper ion. Asian J. Ecotoxicol 10(4):34–46

  • Ljunggren J, Edman M, Jonsson BG, Bylund D, Hedenström E (2020) Evaluation of fractionally distilled Picea abies TMP-turpentine on wood-decaying fungi: in vitro, microcosm and field experiments. Wood Sci Technol 54(4):847–868

    Article  CAS  Google Scholar 

  • Ma D (2018) The Relationship between Algae Biodiversity and Biomass under Different Cadmium Stress: A Microcosm Experiment. J. Northwest Univ. 94:1–69

  • Mahanty B, Jesudas S and Padmaprabha A (2019). “Toxicity of surface functionalized iron oxide nanoparticles toward pure suspension culture and soil microcosm.” Environ Nanotechnol Monit Manag 2019(12):100235

  • Marín-Muñiz JL, Hernández ME, Gallegos-Pérez MP, Amaya-Tejeda SI (2020) Plant growth and pollutant removal from wastewater in domiciliary constructed wetland microcosms with monoculture and polyculture of tropical ornamental plants. Ecol Eng 147:105658

    Article  Google Scholar 

  • Martinez JG, Quiobe SP, Moens T (2019) Effects of Mercury (Hg) on Soil Nematodes: A Microcosm Approach. Arch Environ Contam Toxicol 77(3):421–431

    Article  CAS  Google Scholar 

  • Martínez-Sosa P, Tierney JE and Meredith LK (2020). “Controlled lacustrine microcosms show a brGDGT response to environmental perturbations.” Org Geochem 2020(145):104041

  • Maruzani R, Pathak A, Ward M, Serafim V, Munoz LP, Shah AJ and Marvasi M (2020). “Antibiotic selective pressure in microcosms: Pollution influences the persistence of multidrug resistant Shigella flexneri 2a YSH6000 strain in polluted river water samples.” Environ Technol Innov 2020(19):100821

  • Metsopkeng CS, Djimeli CL, Ewoti OVN, Moungang LM, Nana PA, Arfao AT, Bahebeck PN, Sime-Ngando T and Nola M (2019). “Moringa oleifera Seeds Extract Activity on Enteropathogenic Escherichia coli and Aeromonas hydrophyla Cells in Aquatic Microcosm.” J Appl Biotechnol 7(2):3–30

  • Mwagona PC, Yao Y, Yuanqi S, Yu H (2019) Greenhouse gas emissions from intact riparian wetland soil columns continuously loaded with nitrate solution: a laboratory microcosm study. Environ Sci Pollut Res 26(32):33702–33714

    Article  Google Scholar 

  • Nikolopoulou M, Eickenbusch P, Pasadakis N, Venieri D, Kalogerakis N (2013) Microcosm evaluation of autochthonous bioaugmentation to combat marine oil spills. New Biotechnol 30(6):734–742

    Article  CAS  Google Scholar 

  • Patil SM, Suryavanshi MV, Chandanshive VV, Kurade MB, Govindwar SP and Jeon BH (2020). “Regeneration of textile wastewater deteriorated microbial diversity of soil microcosm through bioaugmentation.” Chem Eng J 2020(380):122533

  • Peng F-J, Ying G-G, Pan C-G, Selck H, Salvito D, Van Den Brink PJ (2018) Bioaccumulation and Biotransformation of Triclosan and Galaxolide in the Freshwater Oligochaete Limnodrilus hoffmeisteri in a Water/Sediment Microcosm. Environ Sci Technol 52(15):8390–8398

    Article  CAS  Google Scholar 

  • Pinheiro M, Pagel H, Poll C, Ditterich F, Garnier P, Streck T, Kandeler E, Vieublé Gonod L  (2018). “Water flow drives small scale biogeography of pesticides and bacterial pesticide degraders - A microcosm study using 2,4-D as a model compound.” Soil Biol Biochem 127: 137–147.

  • Piwosz K, Vrdoljak A, Frenken T, Gonzalez-Olalla JM, Santic D, McKay RM, Spilling K, Guttman L, Znachor P, Mujakic I, Fecskeova LK, Zoccarato L, Hanusova M, Pessina A, Reich T, Grossart HP and Koblizek M (2020). “Light and primary production shape bacterial activity and community composition of aerobic anoxygenic phototrophic bacteria in a microcosm experiment.” mSphere 5(4):e00354–20

  • Procópio L (2020) Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm. Appl Microbiol Biotechnol 104(14):6397–6411

    Article  Google Scholar 

  • Rathankumar AK, Saikia K, Ramachandran K, Batista RA, Cabana H, Vaidyanathan VK (2020) Effect of soil organic matter (SOM) on the degradation of polycyclic aromatic hydrocarbons using Pleurotus dryinus IBB 903-A microcosm study. J Environ Manag 260:110153

    Article  CAS  Google Scholar 

  • Rolston HM, Hyman MR, Semprini L (2019) Aerobic cometabolism of 1,4-dioxane by isobutane-utilizing microorganisms including Rhodococcus rhodochrous strain 21198 in aquifer microcosms: Experimental and modeling study. Sci Total Environ 694:133688

    Article  CAS  Google Scholar 

  • Storey S, Ashaari MM, Clipson N, Doyle E, de Menezes AB (2018). “Opportunistic bacteria dominate the soil microbiome response to phenanthrene in a microcosm-based study.” Front Microbiol 21(9):2815

  • Sun Y, Wang Y, Cao X, Song X (2019) Hydraulic performance evaluation of a quasi-two dimensional constructed wetland microcosm using tracer tests and Visual MODFLOW simulation. J Contam Hydrol 226:103537

    Article  CAS  Google Scholar 

  • Tadros HRZ, Hamdona SK, Ghobrial MG, El-Naggar MF, Abd El-Hamid OH (2019) Wastewater Treatment of Mariout Lake Drains Using Combined Physical, Chemical, and Biological Methods in Microcosm Experiments. Aqua Sci Technol 7(2):46–70

    Article  Google Scholar 

  • Vijayaraj V, Liné C, Cadarsi S, Salvagnac C, Baqué D, Elger A, Barret M, Mouchet F, Larue C (2018) Transfer and Ecotoxicity of Titanium Dioxide Nanoparticles in Terrestrial and Aquatic Ecosystems: A Microcosm Study. Environ Sci Technol 52(21):12757–12764

    Article  CAS  Google Scholar 

  • Wang H, Li H, Sun K, Huang H, Zhu P, Lu Z (2020) Impact of exogenous nitrogen on the cyanobacterial abundance and community in oil-contaminated sediment: A microcosm study. Sci Total Environ 710:136296

    Article  CAS  Google Scholar 

  • Wang J, Wang WX (2014) Low bioavailability of silver nanoparticles presents trophic toxicity to marine medaka (Oryzias melastigma). Environ Sci Technol 48(14):8152–8161

    Article  CAS  Google Scholar 

  • Wang L, Liu. JM, Liu JN, Shi LL (2015). “Application of the aquatic model ecosystem in ecological risk assessment of chemicals.” Asian J. Ecotoxicol 10(2):36–44

  • Wang M, Xiong W, Zou Y, Lin M, Zhou Q, Xie X, Sun Y (2019) Evaluating the net effect of sulfadimidine on nitrogen removal in an aquatic microcosm environment. Environ Pollut 248:1010–1019

    Article  CAS  Google Scholar 

  • Wada M, Yukiko T, Nagae S, Ohtake Y, Yu U, Nakamura S, Yoshida M, Matsuyama Y, Iwataki M, Takeshita S, Oda T (2018) Temporal dynamics of dissolved organic carbon (DOC) produced in a microcosm with red tide forming algae Chattonella marina and its associated bacteria. J Oceanogr 74:587–593

    Article  CAS  Google Scholar 

  • Wang R, Tai Y, Wan X, Ruan W, Man Y, Wang J, Yang Y, Yang Y (2018) Enhanced removal of Microcystis bloom and microcystin-LR using microcosm constructed wetlands with bioaugmentation of degrading bacteria. Chemosphere 210:29–37

    Article  CAS  Google Scholar 

  • Wang Z, Yin L, Zhao J, Xing B (2016) Trophic transfer and accumulation of TiO2 nanoparticles from clamworm (Perinereis aibuhitensis) to juvenile turbot (Scophthalmus maximus) along a marine benthic food chain. Water Res 25:250–259

    Article  Google Scholar 

  • Warrington R (1858) The Aquarium. R.I.Schoolmaster 4:46

  • Xiao PF, Lin XY, Liu YH, Zhao Y, Shen J, Xu JY, Geng CM, Zhu GN (2017) “Application of species sensitivity distribution in aquatic ecological risk assessment of chlopyrifos for paddy ecosystem.” Asian J. Ecotoxicol. 12(3):398–407

  • Xu H, Li H, Tang Z, Liu Y, Li G, He Q (2020) “Underestimated methane production triggered by phytoplankton succession in river-reservoir systems: Evidence from a microcosm study.” Water Res 185: 116233.

  • Yaozong F (2002) Concept and Criteria of Stabilty for Managed Ecosystem. Chinese J Ecol 21(5):58–60

    Google Scholar 

  • Yi T, Shan Y, Huang B, Tang T, Wei W, Quinn NWT (2020) An efficient Chlorella sp.-Cupriavidus necator microcosm for phenol degradation and its cooperation mechanism. Sci Total Environ 743:140775

    Article  CAS  Google Scholar 

  • Yu C, Shi C, Tang J, Ji Q, Wang X, Xu X, Wang G (2019) Release of taste and odour compounds during Zizania latifolia decay: A microcosm system study. Environ Pollut 254:1–8

    Article  Google Scholar 

  • Yuan T, McCarthy AJ, Zhang Y, Sekar R (2020) Impact of Temperature, Nutrients and Heavy Metals on Bacterial Diversity and Ecosystem Functioning Studied by Freshwater Microcosms and High-Throughput DNA Sequencing. Curr Microbiol 77:3512–3525

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang D (2002) Productivity, reliability and species diversity in aquatic microcosms. Biodivers. Sci 10:135–142

  • Zhang Z, Rengel Z, Meney K (2008) Interactive effects of N and P on growth but not on resource allocation of Canna indica in wetland microcosms. Aquat Bot 89(3):317–323

    Article  CAS  Google Scholar 

  • Zhang C,Zhou X, Chen J, Nie X (2009). “Dynamics and Fate of Ciprofloxacinina Simulated Aquatic System.” J Ecol Rural Environ 25(3): 73-78.

  • Zhou X, Li Z, Huang B, Liu C, Gu Y (2017) Ecological stability analysis of reclaimed water based on aquatic biological regulation and control. Environ Sci Technol 40(4):176–182

  • Zhu ZP, Du HR (2013) “Study on structure and function between simulated pond microcosm and real pond ecosystem in Pearl River Delta region.” Occup. Health 29(18):2394–2396

Download references

Funding

This work was financially supported by the National Key R&D Program of China (2018YFD0900902, 2018YFD0900905), and the Natural Science Foundation of Shandong Province, China (No. ZR2019MC011).

Author information

Authors and Affiliations

Authors

Contributions

Zhihua Li conceived the frame of the paper, Zhihan Cao wrote the manuscript, and Ping Li made the data figures and participated in writing the manuscript.

Corresponding authors

Correspondence to Ping Li or Zhi-Hua Li.

Ethics declarations

Ethics approval and consent to participate

This manuscript is ethical.

Consent for publication

Not applicable

Competing interests

The authors declare no competing interest.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• This paper summarizes the classification and the latest application fields of microcosm.

• Proposed an evaluation method for the stability of the microcosm.

• Prospects for the future development trend of microcosm.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Li, P. & Li, ZH. A latest review on the application of microcosm model in environmental research. Environ Sci Pollut Res 28, 60438–60447 (2021). https://doi.org/10.1007/s11356-021-16424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16424-7

Keywords

Navigation