Skip to main content
Log in

Determination of Hydraulic Conductivity of Unconsolidated River Alluvium from Permeameter Tests, Empirical Formulas and Statistical Parameters Effect Analysis

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Hydraulic conductivity is an important parameter for the investigation of flow processes through streambeds. This paper presents a comparison of hydraulic conductivity estimates of unconsolidated sandy samples collected at four sites of the Nestos River point-bar deposits, Greece. Values of K were determined using laboratory permeameter tests as well as the widely applied empirical formulas of Hazen, Slichter, Terzaghi, Beyer, Sauerbrei, Krueger, Kozeny, Zunker, Zamarin, USBR, Alyamani and Sen, Shepherd, and Loudon, based on the grain-size distribution. In a statistical regression analysis, the relation between several graphical statistical grain size parameters and the determined K values, and the effect of these parameters on K estimates was investigated. For this study site it was found that the empirical formula of Loudon provided the most reliable K estimates for the upper 0.25 m of the streambed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alyamani MS, Sen Z (1993) Determination of hydraulic conductivity from complete grain-size distribution curves. Ground Water 31(4):551–555

    Article  Google Scholar 

  • ASTM D 2434-68 (1994) Standard test method for permeability of granular soils (constant-head). Annual book of ASTM standards. American Society for Testing and Materials, Philadelphia, Pennsylvania, 04.08:191–195 USA

  • Aubertin M, Bussière B, Chapuis RP (1996) Hydraulic conductivity of homogenized tailings from hard rock mines. Can Geotech J 33(3):470–482

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York

    Google Scholar 

  • Beyer W (1964) Zur Bestimmung der Wasserdurchlässigkeit von Sanden und Kiesen, aus der Kornverteilungskurve. Z Wasserwirt-Wassertech 14:165–168 (in German)

    Google Scholar 

  • Boadu FK (2000) Hydraulic conductivity of soils from grain-size distribution: new models. J Geotech Geoenvironmental Eng 126(8):739–746

    Article  Google Scholar 

  • Boudreau BP, Huettel M, Forster S, Jahnke RA, McLachlan A, Middelburg JJ, Nielsen P, Sansone F, Taghon G, van Raaphorst W, Webster I, Weslawski JM, Wilberg P, Sundby B (2001) Permeable marine sediments: overturning an old paradigm. Eos 82:134–136

    Google Scholar 

  • Bussière B (1993) Évaluation des propriétés hydrogéologiques des résidus miniers utilisés comme barrières de recouvrement. Mémoire de Maîtrise, Département du Génie Mineral, École Polytechnique de Montréal

  • Butler JJ (1999) The design, performance, and analysis of slug tests. CRC, Boca Raton

    Google Scholar 

  • Cardenas MB, Zlotnik VA (2003) A simple constant-head injection test for streambed hydraulic conductivity estimation. Ground Water 41(6):867–871

    Article  Google Scholar 

  • Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166

    Google Scholar 

  • Carman PC (1956) Flow of gases through porous media. Butterworths Scientific, London

    Google Scholar 

  • Cashman PM, Preene M (2001) Groundwater lowering in construction. A practical guide. Spon, New York

    Google Scholar 

  • Chapuis RP, Montour I (1992) Évaluation de l’équation de Kozeny–Carman pour prédire la conductivité hydraulique. In: Proceedings, 45ième Conférence Canadienne de Géotechnique, Toronto, Ontario, pp 78-1–78-10

  • Chen XH (2000) Measurement of streambed hydraulic conductivity and its anisotropy. Environ Geol 39(12):1317–1324

    Article  Google Scholar 

  • Cheng C, Song J, Chen X, Wang D (2011) Statistical distribution of streambed vertical hydraulic conductivity along the Platte River, Nebraska. Water Resour Manage 25:265–285

    Article  Google Scholar 

  • Chin DA (2000) Water-resources engineering. Prentice Hill, Upper Saddle River

    Google Scholar 

  • Cronican AE, Gribb MM (2004) Hydraulic conductivity prediction for sandy soils. Ground Water 42(3):459–464

    Article  Google Scholar 

  • Dawson KJ, Istok JD (1991) Aquifer testing—design and analysis of pumping and slug tests. Lewis, Chelsea, 344 pp

  • Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, New York

    Google Scholar 

  • EM 1110-1-1804 (2001) Engineering and design geotechnical investigations—sampling requirement. F-2-1-F-2-15, U.S. Army Corps of Engineers

  • Folk RL, Ward WC (1957) Brazos River bar, a study in the significance of grain-size parameter. J Sediment Petrol 27:3–27

    Google Scholar 

  • Foster S, Bobertz, Bohling B (2003) Hydraulic conductivity of sands in the coastal areas of the southern Baltic Sea: mapping a grain-size related sediment property. Aquat Geochem 9:171–190

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Genereux DP, Leahy S, Mitasova H, Kennedy CD, Corbett, DR (2008) Spatial and temporal variability of streambed hydraulic conductivity in West Bear Creek, North Carolina, USA. J Hydrol 358:332–353

    Article  Google Scholar 

  • Goswami D, Kalita PK, Mehnert E (2010) Modeling and simulation of baseflow to drainage ditches during low-flow periods. Water Resour Manag 24:173–191

    Article  Google Scholar 

  • Hazen A (1892) Some physical properties of sands and gravels with special reverence to their use in filtration. In: 24th annual report, Massachusetts State Board of Health, pp 539–556

  • Hazen A (1911) Discussion of dams on sand foundations. Trans Am Soc Civ Eng 73:199–203

    Google Scholar 

  • Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations, U.S. Army Waterways Experiment Station Bulletin 36, Vicksburg, Mississippi

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater–surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887

    Article  Google Scholar 

  • Kovács G (1981) Seepage hydraulics. Elsevier, Amsterdam

    Google Scholar 

  • Kozeny J (1927) Uber Kapillare Leitung Des Wassers in Boden. Sitzungsber Akad, Wiss. Wien Math. Naturwiss. Kl., Abt.2a 13:271–306 (in German)

    Google Scholar 

  • Kruseman GP, De Ridder NA (1991) Analysis and evaluation of pumping test data. International Institute for Land Reclamation and Improvement, The Netherlands, 377 pp

  • Landon MK, Rus DL, Harvey FE (2001) Comparison of instream methods for measuring hydraulic conductivity in sandy sediments. Ground Water 39(6):870–885

    Article  Google Scholar 

  • Longcang S, Wang Z, Ong’Or TI, Wang L, Hao Z, Wang Y, Wang M, Liu B, Li W (2007) Determination methods for streambed hydraulic conductivity in the lower reach of the Yellow River, Methodology in Hydrology. In: Proceedings of the second international symposium on methodology in hydrology held in Nanjing, China, November 2005, IAHS Publ., vol 311, pp 594–599

  • Loudon AG (1952) The computation of hydraulic conductivity from simple soil test. Geotechnique 3(3):165–183

    Google Scholar 

  • Martin JB, Cable JE, Jaeger JM, Hartl KM, Smith CG (2006) Thermal and chemical evidence for rapid water exchange across the sediment–water interface by bioirrigation in the Indian River Lagoon, Florida. Limnol Oceanogr 51:1332–1341

    Article  Google Scholar 

  • Masch FD, Denny KJ (1996) Grain size distribution and its effect on the hydraulic conductivity of unconsolidated sands. Water Resour Res 2(4):665–677

    Article  Google Scholar 

  • Mbonimpa M, Aubrtin M, Chapuis RP, Bussière B (2002) Practical pedotransfer functions for estimating the saturated hydraulic conductivity. Geotech Geol Eng 20:235–259

    Article  Google Scholar 

  • Odong J (2007) Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. J Am Sci 3(3):54–60

    Google Scholar 

  • Panda MN, Lake L (1994) Estimation of single-phase permeability from parameters of particle-size distribution. AAPG Bull 78(7):1028–1039

    Google Scholar 

  • Petalas C, Pliakas F, Diamantis I, Kallioras A (2005) Development of an integrated conceptual model for the rational management of the transboundary Nestos River, Greece. Environ Geol 48(7):941–954

    Article  Google Scholar 

  • Pliakas F, Diamantis I, Petalas C (2001) Saline water intrusion and groundwater artificial recharge in east delta of Nestos River. In: Proceedings of the 7th international conference on environmental science and technology, University of the Aegean, Dept. of Environmental Studies, and Global Nest, Ermoupolis, Syros, Greece, 3–6/9/2001, vol 2, pp 719–726

  • Pinder GF, Celia MA (2006) Subsurface hydrology. Wiley, Hoboken

    Book  Google Scholar 

  • Preene M, Roberts TOL, Powrie W, Dyer MR (1997) Groundwater control: design and practice. CIRIA Report C515, Reproduced by permission of CIRIA

  • Ryan R, Boufadel M (2007) Evaluation of streambed hydraulic conductivity heterogeneity in an urban watershed. Stoch Environ Res Risk Assess J 21(4):309–316

    Article  Google Scholar 

  • Shepherd RG (1989) Correlations of hydraulic conductivity and grain size. Ground Water 27(5):633–638

    Article  Google Scholar 

  • Slichter CS (1899) Theoretical investigation of the motion of ground waters. U.S. Geol. Surv., 19th Ann. Rept. 2:295–384

    Google Scholar 

  • Song J, Chen X, Cheng C, Wang D, Lackey S, Xu Z (2009) Feasibility of grain-size analysis for determination of vertical hydraulic conductivity of streambeds. J Hydrol 375:428–437

    Article  Google Scholar 

  • Terzaghi K (1925) Principles of soil mechanics. Eng News-Rec 95:832–836

    Google Scholar 

  • Terzaghi K, Peck RB (1964) Soil mechanics in engineering practice. Wiley, New York

    Google Scholar 

  • Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice, 3rd edn. Wiley, New York

    Google Scholar 

  • Tieje O, Hennings V (1996) Accuracy of the saturated hydraulic conductivity prediction by pedotransfer functions compared to the variability within FAO textural classes. Geoderma 69:71–84

    Article  Google Scholar 

  • Todd DK, Mays LW (2005) Groundwater hydrology, 3rd edn. Wiley, New York

    Google Scholar 

  • Uma KO, Egboka BCE, Onuoha KM (1989) New statistical grain-size method for evaluating the hydraulic conductivity of sandy aquifers. J Hydrol 108:343–366

    Article  Google Scholar 

  • Vuković M, Soro A (1992) Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources Publications, Colorado, 83 pp

    Google Scholar 

  • Wilkison DH, Blevins DW, Kelly BP, Wallace WC (1994) Hydrology and water quality in claypan soil and glacial till at the Missouri Management Systems Evaluation Area near Centralia, Missouri—May 1991 to September 1993, U.S. Geological Survey Open-File Report:94-705

  • Wykeham Farrance International (1998) Falling head/constant head permeability cells manual. WF26010/20635, UK

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pliakas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pliakas, F., Petalas, C. Determination of Hydraulic Conductivity of Unconsolidated River Alluvium from Permeameter Tests, Empirical Formulas and Statistical Parameters Effect Analysis. Water Resour Manage 25, 2877–2899 (2011). https://doi.org/10.1007/s11269-011-9844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-011-9844-8

Keywords

Navigation