Skip to main content
Log in

Isolation and Characterization of Three New Promoters from Gossypium hirsutum that Show High Activity in Reproductive Tissues

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Engineering of plant protection requires well-characterized tissue-specific promoters for the targeted expression of insecticidal resistance genes. Herein, we describe the isolation of five different fragments of promoters of three distinct flower-specific cotton (Gossypium hirsutum) genes. Expression analyses of the three genes GhPME-like1, GhβGal-like1 and GhPL-like1 revealed that they are expressed highly in flowers buds ranging from 4 to 12 mm in size. Several putative regulatory cis-elements were identified in the promoter regions, including elements involved in the control of tissue-specific gene expression in pollen grains and fruits. In vivo analyses of these promoters were performed using the heterologous plant system Arabidopsis thaliana by fusing them with the gene uidA (GUS). GUS staining in Arabidopsis tissues revealed that their expression was restricted to anthers, with the majority of expression in pollen grains and in the upper portion of the carpels and siliques. A comparison between a CaMV35S::GUS constitutive promoter and the promoters isolated in this study revealed that the cotton promoters were more active and were specific to flowers and fruits, which are organs that are preferentially attacked by important pest insects such as the boll weevil (Anthonomus grandis). The activity of the promoters was also confirmed using transient expression assays in flower buds of G. hirsutum. The promoters of GhPME-like1, GhβGal-like1 and GhPL-like1 are specific to reproductive tissues and could represent important biotechnological tools for controlling insect pests, in particular the cotton boll weevil, which attacks floral and fruit tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn YO, Zheng M, Bevan DR, Esen A, Shiu SH, Peng HP, Miller JT, Cheng LI, Poulton JE, Shih MC (2007) Functional genomics analysis of Arabidopsis thaliana glycoside hydrolase family 35. Phytochemistry 11:1510–1520

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Artico S, Nardeli SM, Oliveira-Neto OB, Grossi-de-Sa MF, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:12–22

    Article  Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  CAS  PubMed  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chang WC, Lee TY, Huang HD, Huang HY, Pan RL (2008) PlantPAN: plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics 9:561

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen L, Miao Y, Wang C, Su P, Li T, Wang R, Hao X, Yang G, He G, Gao C (2012) Characterization of a novel pollen-specific promoter from wheat (Triticum Aestivum L.). Plant Mol Biol Rep 30:1426–1432

    Article  CAS  Google Scholar 

  • Chitkowski RL, Turnipseed SG, Sullivan MJ, Bridges WC (2003) Field and laboratory evaluations of transgenic cottons expressing one or two Bacillus thuringiensis var. kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests. J Econ Entomol 96:755–762

    Article  CAS  PubMed  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218.

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Czechowski TSM, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dalal M, Chinnusamy V, Bansal KC (2010) Isolation and functional characterization of lycopene β-cyclase (CYC-B) promoter from Solanum habrochaites. BMC Plant Biol 10:61

    Article  PubMed Central  PubMed  Google Scholar 

  • Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of agrobacterium-mediated transformation by the arabidopsis floral-dip method. Plant Physiol 123:895–904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang RX, Nagy F, Sivasubramaniam S, Chua NH (1989) Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1:141–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greenberg SM, Sappington TW, Setamou M, Coleman RJ (2003) Influence of different cotton fruit sizes on boll weevil (Coleoptera: Curculionidae) oviposition and survival to adulthood. Environ Entomol 33:443–449

    Article  Google Scholar 

  • Grossi-de-Sa MF, Magalhães MQ, Silva MS, Silva SMB, Dias SC, Nakasu EYT, Brunetta PSF, Oliveira GR, Oliveira Neto OB, Oliveira RS, Soares LHB, Ayub MAZ, Siqueira HAA, Figueira ELZ (2007) Susceptibility of Anthonomus grandis (cotton boll weevil) and Spodoptera frugiperda (fall armyworm) to a Cry1Ia-type toxin from a Brazilian Bacillus thuringiensis strain J. J Biochem Mol Biol 40:773–782

    Article  CAS  PubMed  Google Scholar 

  • Guilley H, Dudley RK, Jonard G, Balazs E, Richards KE (1982) Transcription of cauliflower mosaic virus DNA: detection of promoter sequences, and characterization of transcripts. Cell 30:763–770

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 3:307–321

    Article  Google Scholar 

  • Haerizadeh F, Wong CE, Bhalla PL, Gresshoff PM, Singh MB (2009) Genomic expression profiling of mature soybean (Glycine max) pollen. BMC Plant Biol 9:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Haynes JW, Smith JW (1992) Longevity of laboratory-reared boll weevils (Coleoptera: Curculionidae) offered honey bee-collected pollen and plants unrelated to cotton. J Entomol Sci 27:366–374

    Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hrubá P, Honys D, Twell D, Capková V, Tupý J (2005) Expression of β-galactosidase and β-xylosidase genes during microspore and pollen development. Planta 220:931–940

    Article  PubMed  Google Scholar 

  • Jefferson R (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Report 5:387–405

    Article  CAS  Google Scholar 

  • Jiang L, Yang S, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan VYED (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koia J, Moyle R, Hendry C, Lim L, Botella JR (2013) Pineapple translation factor SUI1 and ribosomal protein L36 promoters drive constitutive transgene expression patterns in Arabidopsis thaliana. Plant Mol Biol 81:327–336

    Article  CAS  PubMed  Google Scholar 

  • Koorneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921

    Article  Google Scholar 

  • Kranthi KR, Naidu S, Dhawad CS, Tatwawadi A, Mate K, Patil E, Bharose AA, Behere GT, Wadaskar RM, Kranthi S (2005) Temporal and intra-plant variability of Cry1Ac expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera (Hubner) (Noctuidae : Lepidoptera). Curr Sci 89:291–298

    CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DJ (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang YS, Jeon YA, Lim SH, Kim JK, Lee JY, Kim YM, Lee YH, Ha SH (2011) Vascular-specific activity of the Arabidopsis carotenoid cleavage dioxygenase 7 gene promoter. Plant Cell Rep 6:973–980

    Article  Google Scholar 

  • Louvet R, Cavel E, Gutierrez L, Guénin S, Roger D, Gillet F, Guerinea F, Pelloux J (2006) Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana. Planta 224:782–791

    Article  CAS  PubMed  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monoxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Martins WFS, Ayres CFJ, Lucena WA (2007a) Genetic diversity of Brazilian naturalpopulations of Anthonomus grandis Boheman(Coleoptera: Curculionidae), the major cottonpest in the New World. Genet Mol Res 6:23–32

    Google Scholar 

  • Martins ES, Praça LB, Dumas VF, Silva-Werneck JO, Sone EH, Waga IC, Berry C, Monnerat RG (2007b) Characterization of Bacillus thuringiensis isolates toxic to cotton boll weevil (Anthonomus grandis). Biol Control 40:65–68

    Article  CAS  Google Scholar 

  • Ni SM, Meng LJ, Zhao J, Wang XC, Chen J (2008) Isolation and characterization of the trichome-specific AtTSG1 promoter from Arabidopsis thaliana. Plant Mol Biol Rep 26:263–276. doi:10.1007/s11105-008-0036-5

    Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  • Olsen KM, Daly JC, Finnegan EJ, Mahon RJ (2005) Changes in Cry1Ac Bt transgenic cotton in response to two environmental factors: temperature and insect damage. J Econ Entomol 98:1382–1390

    Article  CAS  PubMed  Google Scholar 

  • Onãte-Sánchez L, Vicente-Carbajosa J (2008) DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Res Notes 1:840–860

    Article  Google Scholar 

  • Palusa SG, Golovkin M, Shin SB, Richardson DN, Reddy ASN (2007) Organ-specific, developmental, hormonal and stress regulation of expression of putative pectate lyase genes in Arabidopsis. New Phytol 174:537–550

    Article  CAS  PubMed  Google Scholar 

  • Potenza C, Aleman L, Gopalan CS (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1–22

    Article  CAS  Google Scholar 

  • Prestridge DS (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci 7:203–206

    CAS  PubMed  Google Scholar 

  • Rech EL, Vianna GR, Aragao FL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3:410

    Article  CAS  PubMed  Google Scholar 

  • Rocha PSCF, Sheikh M, Melchiorre R, Fagard M, Boutet S, Loach R, Moffatt B, Wagner C, Vaucheret H, Furner I (2005) The Arabidopsis homology-dependent gene silencing gene codes for an S-adenosyl-l-homocysteine hydrolase required for DNA methylation-dependent gene silencing. Plant Cell 17:404–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585

    Article  CAS  PubMed  Google Scholar 

  • Rozen S and Skaletsky HJ (2002) Primer3 on the www for general users and for biologist programmers. In: Misener S, Krawetz SA (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totowa, NJ, pp 365–386. Source code available at http://fokker.wi.mit.edu/primer3/

  • Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructin phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thurigiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Remans T, Sagi L, Elliott AR, Dietzgen RG, Swennen R, Ebert PR, Grof CPL, Manners JM (2001) Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol 47:399–412

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Nocker SV (2010) Analysis of promoter activity of members of the PECTATE LYASE-LIKE (PLL) gene family in cell separation in Arabidopsis. BMC Plant Biol 1:152

    Article  Google Scholar 

  • Sunilkumar G, Mohr L, Lopata-Finch E, Emani C, Rathore KS (2002) Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Mol Biol 50:463–474

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 10:2731–2739

    Article  Google Scholar 

  • Tian GW, Chen MH, Zaltsman A, Citovsky V (2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294:83–91

    Article  CAS  PubMed  Google Scholar 

  • Udall JA, Swanson JM, Haller K, Rapp RA, Sparks ME, Hatfield J, Yu YS, Wu YR, Dowd C, Arpat AB, Sickler BA, Wilkins TA, Guo JY, Chen XY, Scheffler J, Taliercio E, Turley R, Mcfadden H, Payton P, Klueva N, Allen R, Zhang DS, Haigler C, Wilkerson C, Suo JF, Schulze SR, Pierce ML, Essenberg M, Kim H, Llewellyn DJ, Dennis ES, Kudrna D, Wing R, Paterson AH, Soderlund C, Wendel JF (2006) A global assembly of cotton ESTs. Genome Res 16:441–450

    Article  PubMed Central  PubMed  Google Scholar 

  • Viana AAB, Fragoso RR, Guimarães LM, Pontes N, Oliveira-Neto OB, Artico S, Nardeli SM, Alves-Ferreira M, Batista JN, Silva MCM, Grossi-de-Sa MF (2011) Isolation and functional characterization of a cotton ubiquitination-related promoter and 5′UTR that drives high levels of expression in root and flower tissues. BMC Biotechnol 11:115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 5:691–699

    Article  Google Scholar 

  • Yamagata H, Yonesu K, Hirata A, Aizono Y (2002) TGTCACA motif is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene. J Biol Chem 277:11582–11590

    Article  CAS  PubMed  Google Scholar 

  • Yi N, Kim YS, Jeong MH, Oh SJ, Jeong JS, Park SH, Jung H, Choi YD, Kim JK (2010) Functional analysis of six drought-inducible promoters in transgenic rice plant throughout all stages of plant growth. Planta 232:743–754

    Article  CAS  PubMed  Google Scholar 

  • Zhang HM, Liu JY (2005) Molecular cloning characterization of a β-Galactosidade gene expression preferentially in cotton fibers. J Integr Plant Biol 47:223–232

    Article  CAS  Google Scholar 

  • Zhang W, McElroy D, Wu R (1991) Analysis of rice Act1 5′ region activity in transgenic rice plants. Plant Cell 3:1155–1165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Hu Y, Jiang C, Zhang W, Li Z, Ming F (2012) Isolation of the Chinese rose sHSP gene promoter and its differential regulation analysis in transgenic Arabidopsis plants. Mol Biol Rep 39:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1047–1064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Shao S, Li X, Zhai Y, Zhang Q, Qian D, Wang Q (2012) Isolation and activity analysis of a seed-abundant soyAP1 gene promoter from soybean. Plant Mol Biol Rep 30:1400–1407

    Article  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the researchers, Fernando Campos de Assis Fonseca and Raquel Sampaio, from Embrapa Genetic Resources and Biotechnology technical assistance with biolistic experiment in cotton. This work was part of S.A’s PhD research in Genetics, at the Department of Genetics of the Universidade Federal do Rio de Janeiro (UFRJ), and was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; M. Alves-Ferreira: # 306025/2010-8) and Fundação de Amparo à Pesquisa do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio Alves-Ferreira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

(DOC 650 kb)

Supplementary Fig. S2

(DOC 52 kb)

Supplementary Fig. S3

(DOC 1280 kb)

Supplementary Table S1

(XLS 40 kb)

Supplementary Table S2

(DOC 142 kb)

Supplementary Table S3

(DOC 102 kb)

Supplementary Table S4

(DOC 60 kb)

Supplementary Table S5

(DOC 106 kb)

Supplementary Table S6

(DOC 102 kb)

Supplementary Table S7

(DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artico, S., Lambret-Frotté, J., Nardeli, S.M. et al. Isolation and Characterization of Three New Promoters from Gossypium hirsutum that Show High Activity in Reproductive Tissues. Plant Mol Biol Rep 32, 630–643 (2014). https://doi.org/10.1007/s11105-013-0674-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0674-0

Keywords

Navigation