Skip to main content
Log in

Modeling of dispersion-engineered all-chalcogenide step-index fiber for wideband supercontinuum generation in the mid-infrared

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Mid-infrared region supercontinuum (SC) generation through designing broadband light sources recently attracts considerable attention in the field of nonlinear optics owing to their numerous applications in sensing and biological imaging. Broadband light sources designed based on different waveguiding structures adopted until today, the SC generation using optical step-index fiber is the prominent one due to its design and fabrication flexibility. In this study, a promising 5-cm-long SC source has been designed and modeled using a step-index fiber structure employing highly nonlinear chalcogenide (ChG) materials such as As\(_2\)Se\(_3\) glass as a core and Ge\(_{11.5}{\hbox {As}}_{{24}}\)Se\(_{64.5}\) glass for its outer cladding. Fiber structure is suitably modeled through its group-velocity dispersion optimization by varying core diameter. The optimized fiber structures are excited using a pump source having 170-fs pulses at 5.5 μm with a peak power of 10 kW. Initial all-normal dispersion excitation produces SC broadening up to 9.5 μm. Further study in a new optimization shows that spectral evolution can be expanded beyond 17 μm covering the wavelength from 3.2 to beyond 17 μm if the fiber structure is excited in the anomalous dispersion regime through a suitably tailored flat group-velocity dispersion curve with smaller in magnitude over a wide wavelength range. Such a promising SC source, which is designed based on typical step-index fiber principle using highly nonlinear ChG glass system, can be utilized in a variety of mid-infrared region applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal, I.D., Sanghera, J.S.: Development and applications of chalcogenide glass optical fibers at NRL. J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002)

    Google Scholar 

  • Agrawal, G.P.: Nonlinear fiber optics. In: Christiansen P.L., Sørensen M.P., Scott A.C. (eds.) Nonlinear Science at the Dawn of the 21st Century, pp. 195–211. Springer, Berlin (2000)

    Google Scholar 

  • Al-Kadry, A., El Amraoui, M., Messaddeq, Y., Rochette, M.: Two octaves mid-infrared supercontinuum generation in As\(_2\)Se\(_3\) microwires. Opt. Express 22(25), 31131–31137 (2014)

    ADS  Google Scholar 

  • Cheng, T., Nagasaka, K., Tuan, T.H., Xue, X., Matsumoto, M., Tezuka, H., Suzuki, T., Ohishi, Y.: Mid-infrared supercontinuum generation spanning 2.0 to 15.1 \(\upmu\)m in a chalcogenide step-index fiber. Opt. Lett. 41(9), 2117–2120 (2016)

    ADS  Google Scholar 

  • Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)

    ADS  Google Scholar 

  • Dupont, S., Petersen, C., Thøgersen, J., Agger, C., Bang, O., Keiding, S.R.: Ir microscopy utilizing intense supercontinuum light source. Opt. Express 20(5), 4887–4892 (2012)

    ADS  Google Scholar 

  • Eggleton, B.J., Luther-Davies, B., Richardson, K.: Chalcogenide photonics. Nat. Photonics 5(3), 141–148 (2011)

    ADS  Google Scholar 

  • Finot, C., Kibler, B., Provost, L., Wabnitz, S.: Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25(11), 1938–1948 (2008). https://doi.org/10.1364/JOSAB.25.001938

    Article  ADS  Google Scholar 

  • Gai, X., Han, T., Prasad, A., Madden, S., Choi, D.Y., Wang, R., Bulla, D., Luther-Davies, B.: Progress in optical waveguides fabricated from chalcogenide glasses. Opt. Express 18(25), 26635–26646 (2010)

    ADS  Google Scholar 

  • Habib, M.S., Markos, C., Bang, O., Bache, M.: Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers. Opt. Lett. 42(11), 2232–2235 (2017)

    ADS  Google Scholar 

  • Hartung, A., Heidt, A.M., Bartelt, H.: Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation. Opt. Express 19(8), 7742–7749 (2011). https://doi.org/10.1364/OE.19.007742

    Article  ADS  Google Scholar 

  • Heidt, A.M.: Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. JOSA B 27(3), 550–559 (2010)

    ADS  Google Scholar 

  • Heidt, A.M., Hartung, A., Bosman, G.W., Krok, P., Rohwer, E.G., Schwoerer, H., Bartelt, H.: Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Opt. Express 19(4), 3775–3787 (2011)

    ADS  Google Scholar 

  • Hooper, L.E., Mosley, P.J., Muir, A.C., Wadsworth, W.J., Knight, J.C.: Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Opt. Express 19(6), 4902–4907 (2011)

    ADS  Google Scholar 

  • Hudson, D.D., Mägi, E.C., Judge, A.C., Dekker, S.A., Eggleton, B.J.: Highly nonlinear chalcogenide glass micro/nanofiber devices: design, theory, and octave-spanning spectral generation. Opt. Commun. 285(23), 4660–4669 (2012)

    ADS  Google Scholar 

  • Hudson, D.D., Antipov, S., Li, L., Alamgir, I., Hu, T., El Amraoui, M., Messaddeq, Y., Rochette, M., Jackson, S.D., Fuerbach, A.: Toward all-fiber supercontinuum spanning the mid-infrared. Optica 4(10), 1163–1166 (2017)

    ADS  Google Scholar 

  • Karim, M., Rahman, B., Azabi, Y., Agrawal, A., Agrawal, G.P.: Ultrabroadband mid-infrared supercontinuum generation through dispersion engineering of chalcogenide microstructured fibers. JOSA B 32(11), 2343–2351 (2015)

    ADS  Google Scholar 

  • Karim, M., Ahmad, H., Rahman, B.: All-normal dispersion chalcogenide pcf for ultraflat mid-infrared supercontinuum generation. IEEE Photonics Technol. Lett. 29(21), 1792–1795 (2017a)

    ADS  Google Scholar 

  • Karim, M., Ahmad, H., Rahman, B.A.: All-normal-dispersion chalcogenide waveguides for ultraflat supercontinuum generation in the mid-infrared region. IEEE J. Quantum Electron. 53(2), 1–6 (2017b)

    Google Scholar 

  • Karim, M., Ahmad, H., Rahman, B.: Design and modeling of dispersion-engineered all-chalcogenide triangular-core fiber for mid-infrared-region supercontinuum generation. JOSA B 35(2), 266–275 (2018a)

    ADS  Google Scholar 

  • Karim, M.R., Ahmad, H., Ghosh, S., Rahman, B.: Mid-infrared supercontinuum generation using As\(_2\)Se\(_3\) photonic crystal fiber and the impact of higher-order dispersion parameters on its supercontinuum bandwidth. Opt. Fiber Technol. 45, 255–266 (2018b)

    ADS  Google Scholar 

  • Kubat, I., Agger, C.S., Møller, U., Seddon, A.B., Tang, Z., Sujecki, S., Benson, T.M., Furniss, D., Lamrini, S., Scholle, K., et al.: Mid-infrared supercontinuum generation to 12.5 \(\upmu\)m in large na chalcogenide step-index fibres pumped at 4.5 \(\upmu\)m. Opt. Express 22(16), 19169–19182 (2014)

    ADS  Google Scholar 

  • Lemière, A., Désévédavy, F., Mathey, P., Froidevaux, P., Gadret, G., Jules, J.C., Aquilina, C., Kibler, B., Béjot, P., Billard, F., et al.: Mid-infrared supercontinuum generation from 2 to 14 \(\upmu\)m in arsenic-and antimony-free chalcogenide glass fibers. JOSA B 36(2), A183–A192 (2019)

    Google Scholar 

  • Lian, Z.G., Li, Q.Q., Furniss, D., Benson, T.M., Seddon, A.B.: Solid microstructured chalcogenide glass optical fibers for the near-and mid-infrared spectral regions. IEEE Photonics Technol. Lett. 21(24), 1804–1806 (2009)

    ADS  Google Scholar 

  • Liu, L., Cheng, T., Nagasaka, K., Tong, H., Qin, G., Suzuki, T., Ohishi, Y.: Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion. Opt. Lett. 41(2), 392–395 (2016)

    ADS  Google Scholar 

  • Ma, P., Choi, D.Y., Yu, Y., Gai, X., Yang, Z., Debbarma, S., Madden, S., Luther-Davies, B.: Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. Opt. Express 21(24), 29927–29937 (2013)

    ADS  Google Scholar 

  • Mägi, E.C., Fu, L., Nguyen, H.C., Lamont, M., Yeom, D., Eggleton, B.: Enhanced kerr nonlinearity in sub-wavelength diameter As\(_2\)Se\(_3\) chalcogenide fiber tapers. Opt. Express 15(16), 10324–10329 (2007)

    ADS  Google Scholar 

  • Markos, C., Bang, O.: Nonlinear label-free biosensing with high sensitivity using As\(_2\)S\(_3\) chalcogenide tapered fiber. J. Lightwave Technol. 33(13), 2892–2898 (2015)

    ADS  Google Scholar 

  • Markos, C., Travers, J.C., Abdolvand, A., Eggleton, B.J., Bang, O.: Hybrid photonic-crystal fiber. Rev. Mod. Phys. 89(4), 045003 (2017)

    ADS  Google Scholar 

  • Ou, H., Dai, S., Zhang, P., Liu, Z., Wang, X., Chen, F., Xu, H., Luo, B., Huang, Y., Wang, R.: Ultrabroad supercontinuum generated from a highly nonlinear Ge–Sb–Se fiber. Opt. Lett. 41(14), 3201–3204 (2016)

    ADS  Google Scholar 

  • Petersen, C.R., Møller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, N., Tang, Z., et al.: Mid-infrared supercontinuum covering the 1.4–13.3 \(\upmu\)m molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics 8(11), 830 (2014)

    ADS  Google Scholar 

  • Petersen, C.R., Engelsholm, R.D., Markos, C., Brilland, L., Caillaud, C., Trolès, J., Bang, O.: Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. Opt. Express 25(13), 15336–15348 (2017)

    ADS  Google Scholar 

  • Petersen, C.R., Prtljaga, N., Farries, M., Ward, J., Napier, B., Lloyd, G.R., Nallala, J., Stone, N., Bang, O.: Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt. Lett. 43(5), 999–1002 (2018)

    ADS  Google Scholar 

  • Saghaei, H., Ebnali-Heidari, M., Moravvej-Farshi, M.K.: Midinfrared supercontinuum generation via As\(_2\)Se\(_3\) chalcogenide photonic crystal fibers. Appl. Opt. 54(8), 2072–2079 (2015)

    ADS  Google Scholar 

  • Saini, T.S., Kumar, A., Sinha, R.K.: Broadband mid-infrared supercontinuum spectra spanning 2–15 \(\upmu\)m using As\(_2\)Se\(_3\) chalcogenide glass triangular-core graded-index photonic crystal fiber. J. Lightw. Technol. 33(18), 3914–3920 (2015)

    ADS  Google Scholar 

  • Sanghera, J., Florea, C., Shaw, L., Pureza, P., Nguyen, V., Bashkansky, M., Dutton, Z., Aggarwal, I.: Non-linear properties of chalcogenide glasses and fibers. J. Noncryst. Solids 354(2–9), 462–467 (2008)

    ADS  Google Scholar 

  • Seddon, A.B., Napier, B., Lindsay, I., Lamrini, S., Moselund, P.M., Stone, N., Bang, O.: Mid-infrared spectroscopy/bioimaging: moving toward MIR optical biopsy. Laser Focus World 52(2), 50–53 (2016)

    Google Scholar 

  • Shiryaev, V., Churbanov, M.: Trends and prospects for development of chalcogenide fibers for mid-infrared transmission. J. Noncryst. Solids 377, 225–230 (2013)

    ADS  Google Scholar 

  • Siwicki, B., Klimczak, M., Stepień, R., Buczynski, R.: Supercontinuum generation enhancement in all-solid all-normal dispersion soft glass photonic crystal fiber pumped at 1550 nm. Opt. Fiber Technol. 25, 64–71 (2015)

    ADS  Google Scholar 

  • Stepniewski, G., Klimczak, M., Bookey, H., Siwicki, B., Pysz, D., Stepien, R., Kar, A., Waddie, A., Taghizadeh, M., Buczynski, R.: Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm. Laser Phys. Lett. 11(5), 055103 (2014)

    ADS  Google Scholar 

  • Ung, B., Skorobogatiy, M.: Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared. Opt. Express 18(8), 8647–8659 (2010)

    ADS  Google Scholar 

  • Wang, Y., Dai, S., Han, X., Zhang, P., Liu, Y., Wang, X., Sun, S.: Broadband mid-infrared supercontinuum generation in novel As\(_2\)Se\(_3\)-As\(_2\)Se\(_2\)S step-index fibers. Opt. Commun. 410, 410–415 (2018)

    ADS  Google Scholar 

  • Wei, C., Zhu, X., Norwood, R.A., Song, F., Peyghambarian, N.: Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 \(\upmu\)m. Opt. Express 21(24), 29488–29504 (2013)

    ADS  Google Scholar 

  • Yu, Y., Zhang, B., Gai, X., Zhai, C., Qi, S., Guo, W., Yang, Z., Wang, R., Choi, D.Y., Madden, S., et al.: 18–10 \(\upmu\)m mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. Opt. Lett. 40(6), 1081–1084 (2015)

    ADS  Google Scholar 

  • Zhao, Z., Wu, B., Wang, X., Pan, Z., Liu, Z., Zhang, P., Shen, X., Nie, Q., Dai, S., Wang, R.: Mid-infrared supercontinuum covering 2.0–16 \(\upmu\)m in a low-loss telluride single-mode fiber. Laser Photonics Rev. 11(2), 1700005 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Karim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karim, M.R., Ghosh, S., Rahman, M.M. et al. Modeling of dispersion-engineered all-chalcogenide step-index fiber for wideband supercontinuum generation in the mid-infrared. Opt Quant Electron 52, 243 (2020). https://doi.org/10.1007/s11082-020-02355-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02355-z

Keywords

Navigation