Skip to main content

Advertisement

Log in

Forest management facing climate change - an ecosystem model analysis of adaptation strategies

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

To adapt to climate change, forest managers request information on management options for obtaining environmental, societal and economic goals. In this study, we assess the potential of adaptive forest management to influence the productivity and storm sensitivity of nemoral and boreal forest. The forest growth across Sweden over the 21st century was simulated by the ecosystem model LPJ-GUESS, comparing four management options: 1) default forest management, 2) shorter rotation period 3) increased fraction of broadleaved trees and 4) continuous cover forestry. The simulations indicated that a management strategy implemented by a majority of forest owners can have a large-scale effect on the standing volume and risk taking. The modelled risk of storm damage, expressed as the combined effect of tree properties, ground frost and wind load, was higher in the southern than in the northern part of the country due to latitudinal variations in all three components. We conclude that whereas the probability of a significant volume loss increase with the age of a forest, the calculated economic loss can be as high in young and mid-age forest stands. To reduce the risk of storm damage and fulfil a variety of management goals, a portfolio of adaptation strategies is needed. It should include active measures such as tree-species mixtures to spread the risks and shorter rotation periods of highly exposed stands, as well as reactive measures such as salvage and sanitary cutting to reduce the risk of subsequent spruce bark beetle outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahlström A, Miller PA, Smith B (2012) Too early to infer a global NPP decline since 2000. GeophysRes Lett 39, L15403

    Google Scholar 

  • Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5(3):169–211

    Google Scholar 

  • Albrecht A, Hanewinkel M, Bauhus J, Kohnle U (2012) How does silviculture affect storm damage in forests of south-western Germany? Results from empirical modeling based on long-term observations. Eur J For Res 131(1):229–247

    Article  Google Scholar 

  • Auclair AND, Lill JT, Revenga C (1996) The role of climate variability and global warming in the dieback of Northern Hardwoods. Water Air Soil Pollut 91(3–4):163–186

    Article  Google Scholar 

  • Augspurger CK (2009) Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest. Funct Ecol 23(6):1031–1039

    Article  Google Scholar 

  • Bakys R, Vasaitis R, Barklund P, Thomsen IM, Stenlid J (2009) Occurrence and pathogenicity of fungi in necrotic and non-symptomatic shoots of declining common ash (Fraxinus excelsior) in Sweden. Eur J For Res 128(1):51–60

    Article  Google Scholar 

  • Beach RH, Pattanayak SK, Yang JC, Murray BC, Abt RC (2005) Econometric studies of non-industrial private forest management a review and synthesis. Forest Policy Econ 7(3):261–281

    Article  Google Scholar 

  • Bergh J, Johansson U, Nilsson U, Sallnäs O (2012) Är anpassning av skogsskötseln nödvändigt i dagsläget för att minska skogsskador i ett förändrat klimat? Del 1 – analyser på beståndsnivå. Sver lantbruksuniversitet Arbetsrapport 43:6–41

    Google Scholar 

  • Bergquist J, Claesson S, Ludvig T, Nilsson J (2013) Återväxtstöd efter stormen Gudrun. Skogsstyrelsen Rapport 2013:1, Swedish Forest Agency, Jönköping, pp 53

  • Brumelle S, Stanbury WT, Thompson WA, Vertinsky I, Wehrung D (1990) Framework for the analysis of risks in forest management and silvicultural investments. For Ecol Manag 36(2–4):279–299

    Article  Google Scholar 

  • Ekvall H, Bostedt G (2009) Skogsskötselns ekonomi. Skogssötselserien 18:70

    Google Scholar 

  • Eriksson LA, Sallnäs O, Ståhl G (2007) Forest certification and Swedish wood supply. Forest Policy Econ 9(5):452–463

    Article  Google Scholar 

  • Erlandsson E, Wiberg M (2008) Lag om ändring i skogsvårdslagen (1979:429). Sven författningssamling 662:1–4

    Google Scholar 

  • Everham EM, Brokaw NVL (1996) Forest damage and recovery from catastrophic wind. Bot Rev 62(2):113–185

    Article  Google Scholar 

  • FAO (1991) The Digitized Soil Map of the World (Release 1.0), vol. 67/1. Food and Agriculture Organization of the United Nations

  • Faustmann M (1849) Berechnung des Wertes welchen Waldboden sowie noch nicht haubare Holzbestände für die Waldwirtschaft besitzen. Allg Forst- Jagdztg 15:441–455

    Google Scholar 

  • Fridh M (ed) (2006) Stormen 2005 - en skoglig analys. Skogsstyrelsen Meddelande 2006:1, Swedish Forest Agency, Jönköping, pp 208

  • FSC (2013) Available via http://se.fsc.org/. Cited 15 Apr 2013

  • Griess VC, Acevedo R, Hartl F, Staupendahl K, Knoke T (2012) Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manag 267:284–296

    Article  Google Scholar 

  • Hanewinkel M, Hummel S, Albrecht A (2011) Assessing natural hazards in forestry for risk management: a review. Eur J For Res 130(3):329–351

    Article  Google Scholar 

  • Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts. Eos 85:566

    Article  Google Scholar 

  • Hickler T, Smith B, Sykes MT, Davis MB, Sugita S, Walker K (2004) Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology 85(2):519–530

    Article  Google Scholar 

  • Hickler T, Vohland K, Feehan J, Miller PA, Smith B, Costa L, Giesecke T, Fronzek S, Carter TR, Cramer W, Kuehn I, Sykes MT (2012) Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob Ecol Biogeogr 21(1):50–63

    Article  Google Scholar 

  • Holub V, Černý K, Strnadová V, Mrázková M, Gregorová B, Gabrielova Š (2010) The survey of some factors affecting bark lesion development caused by Phytophthora cactorum on common beech and other broadleaved trees. J For Sci (Prague) 56(3):93–100

    Google Scholar 

  • Hyytiäinen K, Tahvonen O (2003) Maximum sustained yield, forest rent or Faustmann: Does it really matter? Scand J For Res 18:457–469

    Article  Google Scholar 

  • IPCC (ed) (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 976

    Google Scholar 

  • Jactel H, Petit J, Desprez-Loustau ML, Delzon S, Piou D, Battisti A, Koricheva J (2012) Drought effects on damage by forest insects and pathogens: a meta-analysis. Global Change Biol 18(1):267–276

    Article  Google Scholar 

  • Jönsson AM (2013) Skogsägare behöver praktiska råd. In: Hall M, Björk I (eds) 15 nedslag i klimatforskningen - Dåtid nutid framtid. CEC, Lunds universitet, Lund, pp 155–168

  • Jönsson AM, Schroeder LM, Lagergren F, Anderbrant O, Smith B (2012) Guess the impact of Ips typographus - an ecosystem modelling approach for simulating spruce bark beetle outbreaks. Agric Forest Meteorol 166–167:188–200

    Article  Google Scholar 

  • Jorgensen BB (2001) Erfaringer om stormfasthed fra FSL’s langsigtede bevoksningsplejeforsog - set på baggrund of orkanen den 3. december 1999 og stormene den 20. og 30. januar 2000. Dansk Skovbruks Tidsskr 86(3):145–208

    Google Scholar 

  • Kalén C, Bergquist J, Krekula H (2010) Viltskador tyngsta orsaken till fel trädval. Skogseko 25(1):18–19

    Google Scholar 

  • Keskitalo ECH (2011) How can forest management adapt to climate change? Possibilities in different forestry systems. Forests 2(1):415–430

    Article  Google Scholar 

  • Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2011) 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus A 63:24–40

    Article  Google Scholar 

  • Klenk NL, Adams BW, Bull GQ, Innes JL, Cohen SJ, Larson BC (2011) Climate change adaptation and sustainable forest management: A proposed reflexive research agenda. For Chron 87(3):351–357

    Article  Google Scholar 

  • Koca D, Smith B, Sykes MT (2006) Modelling regional climate change effects on potential natural ecosystems in Sweden. Clim Chang 78(2–4):381–406

    Article  Google Scholar 

  • Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44(2):67–75

    Article  Google Scholar 

  • Lagergren F, Jönsson AM, Blennow K, Smith B (2012) Implementing storm damage in a dynamic vegetation model for regional applications in Sweden. Ecol Model 247:71–82

    Article  Google Scholar 

  • Lavalle C, Micale F, Houston TD, Camia A, Hiederer R, Lazar C, Conte C, Amatulli G, Genovese G (2009) Climate change in Europe. 3. Impact on agriculture and forestry. A review (Reprinted). Agron Sustain Dev 29(3):433–446

    Article  Google Scholar 

  • Lindkvist A, Mineur E, Nordlund A, Nordlund C, Olsson O, Sandström C, Westin K, Keskitalo ECH (2012) Attitudes on intensive forestry. An investigation into perceptions of increased production requirements in Swedish forestry. Scand J For Res 27(5):438–448

    Article  Google Scholar 

  • Linkosalo T, Hakkinen R, Terhivuo J, Tuomenvirta H, Hari P (2009) The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climatic warming. Agric For Meteorol 149(3–4):453–461

    Article  Google Scholar 

  • Loman JO (ed) (2004) Swedish Statistical Yearbook of Forestry 2004, The National Board of Forestry, Jönköping, p 329

    Google Scholar 

  • Mason WL (2002) Are irregular stands more windfirm? Forestry 75(4):347–355

    Article  Google Scholar 

  • Meilby H, Strange N, Thorsen BJ (2001) Optimal spatial harvest planning under risk of windthrow. For Ecol Manag 149(1–3):15–31

    Article  Google Scholar 

  • Mermet L, Farcy C (2011) Contexts and concepts of forest planning in a diverse and contradictory world. Forest Policy Econ 13(5):361–365

    Article  Google Scholar 

  • Miller PA, Giesecke T, Hickler T, Bradshaw RHW, Smith B, Seppa H, Valdes PJ, Sykes MT (2008) Exploring climatic and biotic controls on Holocene vegetation change in Fennoscandia. J Ecol 96(2):247–259

    Article  Google Scholar 

  • Morales P, Sykes MT, Prentice IC, Smith P, Smith B, Bugmann H, Zierl B, Friedlingstein P, Viovy N, Sabate S, Sanchez A, Pla E, Gracia CA, Sitch S, Arneth A, Ogee J (2005) Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Glob Chang Biol 11(12):2211–2233

    Article  Google Scholar 

  • Nakićenović N, Swart R (eds) (2000) Emission scenarios, a special report of working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 612

    Google Scholar 

  • Nielsen CN, Larsen JB (2001) Stormstabilitet og naturnaer skovdrift - med fokus på bevoksninger med en hoj nåletraesandel. Dansk Skovbruks Tidsskr 86(4):264–278

    Google Scholar 

  • Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and Future Projections of Temperature, Precipitation and Wind Extremes over Europe in an Ensemble of Regional Climate Simulations. Tellus A 63:41–55

    Article  Google Scholar 

  • Nilsson C (2008) Windstorms in Sweden - variations and impacts. Dissertation, Lund University, Sweden pp 180

  • Nilsson C, Stjernquist I, Bärring L, Schlyter P, Jönsson AM, Samuelsson H (2004) Recorded storm damage in Swedish forests 1901–2000. For Ecol Manag 199(1):165–173

    Article  Google Scholar 

  • Olofsson E (2006) Supporting management of the risk of wind damage in South Swedish forstry. Doctoral Thesis 2006:46, Dissertation, Swedish University of Agricultural Sciences, Alnarp

  • Päätalo ML (2000) Risk of snow damage in unmanaged and managed stands of Scots pine, Norway spruce and birch. Scand J Forest Res 15(5):530–541

    Article  Google Scholar 

  • Peltola H, Kellomäki S, Vaisanen H (1999a) Model computations of the impact of climatic change on the windthrow risk of trees. Clim Chang 41(1):17–36

    Article  Google Scholar 

  • Peltola H, Kellomäki S, Väisänen H, Ikonen VP (1999b) A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Can J For Res 29(6):647–661

    Article  Google Scholar 

  • Roessiger J, Griess VC, Knoke T (2011) May risk aversion lead to near-natural forestry? A simulation study. Forestry 84(5):527–537

    Article  Google Scholar 

  • Samuelsson P, Jones CG, Willen U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A 63:4–23

    Article  Google Scholar 

  • Schelfer RJ, Voeten J, Guries RP (2008) Biological control of dutch elm disease. Plant Dis 92(2):192–200

    Article  Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):1333–1337

    Article  Google Scholar 

  • Seidl R, Fernandes PM, Fonseca TF, Gillet F, Jönsson AM, Merganicova K, Netherer S, Arpaci A, Bontemps JD, Bugmann H, Gonzalez-Olabarria JR, Lasch P, Meredieu C, Moreira F, Schelhaas MJ, Mohren F (2011) Modelling natural disturbances in forest ecosystems: a review. Ecol Model 222(4):903–924

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9(2):161–185

    Article  Google Scholar 

  • Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 10(6):621–637

    Article  Google Scholar 

  • Smith B, Knorr W, Widlowski JL, Pinty B, Gobron N (2008) Combining remote sensing data with process modelling to monitor boreal conifer forest carbon balances. Forest Ecol Manag 255(12):3985–3994

    Article  Google Scholar 

  • Staupendahl K, Moehring B (2011) Integrating natural risks into silvicultural decision models: A survival function approach. Forest Policy Econ 13(6):496–502

    Article  Google Scholar 

  • Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, Lewis KJ, Worrall JJ, Woods AJ (2011) Climate change and forest diseases. Plant Pathol 60(1):133–149

    Article  Google Scholar 

  • Swartling Å, André K, Blennow K, Bärring L, Jönsson AM, Lagergren F, Lilja A, Smith B (2011) The science-stakeholder interface in Mista-SWECIA: Experiences from the Swedish forestry sector. Mistra SWECIA Ann Rep 2010:6–9

    Google Scholar 

  • Swedish Forest Agency (ed) (1989a) Gallringsmallar Norra Sverige. Tryckeri AB Småland, Jönköping

  • Swedish Forest Agency (ed) (1989b) Gallringsmallar Södra Sverige. Tryckeri AB Småland, Jönköping

  • Tang GP, Beckage B, Smith B, Miller PA (2010) Estimating potential forest NPP, biomass and their climatic sensitivity in New England using a dynamic ecosystem model. Ecosphere 1(6):art18

    Article  Google Scholar 

  • Valinger E, Fridman J (1999) Models to assess the risk of snow and wind damage in pine, spruce, and birch forests in Sweden. Environ Manag 24(2):209–217

    Article  Google Scholar 

  • Valinger E, Fridman J (2011) Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. Forest Ecol Manag 262(3):398–403

    Article  Google Scholar 

  • Valinger E, Pettersson N (1996) Wind and snow damage in a thinning and fertilization experiment in Picea abies in southern Sweden. Forestry 69(1):25–33

    Article  Google Scholar 

  • Venäläinen A, Tuomenvirta H, Lahtinen R, Heikinheimo M (2001) The influence of climate warming on soil frost on snow-free surfaces in Finland. Clim Chang 50(1–2):111–128

    Article  Google Scholar 

Download references

Acknowledgments

This study has been financially supported by the Foundation for Strategic Environmental Research (MISTRA) through the research programmes Mistra-SWECIA and by the Swedish Research Council Formas through a grant to AMJ for the project “Climate change impact on tree defence capacity”. The study is a contribution to the Lund University Strategic Research Area Biodiversity and Ecosystem Services in a Changing Climate (BECC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Jönsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jönsson, A.M., Lagergren, F. & Smith, B. Forest management facing climate change - an ecosystem model analysis of adaptation strategies. Mitig Adapt Strateg Glob Change 20, 201–220 (2015). https://doi.org/10.1007/s11027-013-9487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-013-9487-6

Keywords

Navigation