Skip to main content

Advertisement

Log in

Characterization of a new natural cellulose based fiber from Hierochloe Odarata

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The study was undertaken to investigate the usability of Hierochloe Odarata fibers as a novel reinforcement for polymeric composites. The fibers were extracted from Hierochloe Odarata plant, which is cultivated in Uzunalan, Çanakkale which is in the western part of Turkey. The cellulose, hemicelluloses and lignin contents of Hierochloe Odarata fibers were obtained as 70.4, 21.5, and 8.1%, respectively. The oxygen/carbon ratio of 0.48 may indicate the hydrophilic surface structure of Hierochloe Odarata fibers. The crystallinity index of these Hierochloe Odarata fibers was determined as 63.8% according to the Segal formula. Hierochloe Odarata has 105.7 MPa maximum tensile strength, 2.56 GPa Young’s modulus and 2.4% maximum breaking elongation. The maximum degradation temperature and the char yield of the fibers were obtained as 352 °C and 12.5%, respectively. After physical and chemical properties were characterized in the study, it was concluded that Hierochloe Odarata fibers can be an alternative sustainable material for polymer-based composites as potential reinforcement.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdal-hay A, Putu Gede Suardana N, Jung DY, Choi KS, Lim JK (2012) Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. Int J Precis Eng Manuf 13(7):1199–1206

    Google Scholar 

  • Alavudeen A, Rajini N, Karthikeyan S, Thiruchitrambalam M, Venkateshwaren N (2015) Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: effect of woven fabric and random orientation. Mater Des 66:246–257

    CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresource 99(6):1664–1671

    CAS  Google Scholar 

  • Altinisik A, Seki Y, Ertas S, Akar E, Bozacı E, Seki Y (2015) Evaluating of Agave americana fibers for biosorption of dye from aqueous solution. Fibers Polym 16(2):370–377

    CAS  Google Scholar 

  • Amiri A, Tripplet Z, Moreira A, Brezinka N, Alcock M, Ulven CA (2017) Standard density measurement method development for flax fiber. Ind Crops Prod 96:196–202

    Google Scholar 

  • ASTM D8171-18 (Standard Test Methods for Density Determination of Flax Fiber)

  • Balaji AN, Nagarajan KJ (2017) Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydr Polym 174:200–208

    CAS  Google Scholar 

  • Baskaran PG, Kathiresan M, Senthamaraikannan P, Saravanakumar SS (2018) Characterization of New Natural Cellulosic Fiber from the Bark of Dichrostachys Cinerea. J Nat Fibers 15(1):62–68

    CAS  Google Scholar 

  • Belouadah Z, Ati A, Rokbi M (2015) Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydr Polym 134:429–437

    CAS  PubMed  Google Scholar 

  • Bilba K, Arsene MA, Ouensanga A (2007) Study of banana and coconut fibers: botanical composition, thermal degradation and textural observations. Bioresour Technol 98(1):58–68

    CAS  PubMed  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    CAS  Google Scholar 

  • Bulut Y, Aksit A (2013) A comparative study on chemical treatment of jute fiber: potassium dichromate, potassium permanganate and sodium perborate trihydrate. Cellulose 20(6):3155–3164

    CAS  Google Scholar 

  • Cardenas-R JP, Cea M, Santin K, Valdes G, Hunter RA, Navia R (2017) Characterization and application of a natural polymer obtained from Hydrangea macrophylla as a thermal insulation biomaterial. Compos Part B Eng 132:10–16

    Google Scholar 

  • Chen H, Miao M, Ding X (2009) Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Compos Part A Appl Sci 40(12):2013–2019

    Google Scholar 

  • Csiszar E, Fekete E, Toth A, Bandi E, Koczka B, Sajo I (2013) Effect of particle size on the surface properties and morphology of ground flax. Carbohydr Polym 94:927–933

    CAS  PubMed  Google Scholar 

  • Daneshvar N et al (2007) Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresour Technol 98:1176–1182

    CAS  PubMed  Google Scholar 

  • Das AU, Mondal LR, Shams I (2015) Physical and mechanical properties of Kenaf (Hibiscus cannabinus) MDF. Asian J Appl Sci 8(3):204–209

    CAS  Google Scholar 

  • Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102(2):1988–1997

    CAS  PubMed  Google Scholar 

  • Demir H, Atikler U, Balköse D, Tihminlioğlu F (2006) The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene–Luffa fiber composites. Compos Part A Appl Sci 37(3):447–456

    Google Scholar 

  • Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67(7–8):1674–1683

    CAS  Google Scholar 

  • Felix JM, Gatenholm P (1991) The nature of adhesion in composites of modified cellulose fibers and polypropylene. J Appl Polym Sci 42(3):609–620

    CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    CAS  Google Scholar 

  • Goldsmith FB, Murphy SL (1980) The ecological requirements of Hierochloe odorata in Nova Scotia. Holarct Ecol 3:224–232

    Google Scholar 

  • Goutianos S, Pejis T, Nystrom B, Skrifvars M (2006) Development of flax fibre based textile reinforcements for composite applications. Appl Compos Mater 13(4):199–215

    CAS  Google Scholar 

  • Jabli M, Tka N, Ramzi K, Saleh TA (2018) Physicochemical characteristics and dyeing properties of lignin-cellulosic fibers derived from Neriumoleander. J Mol Liq 249:1138–1144

    CAS  Google Scholar 

  • Jayaramudu J, Guduri B, Rajulu AV (2010) Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydr Polym 79(4):847–851

    CAS  Google Scholar 

  • Jonoobi M, Harun J, Manju M, Oksman K (2009) Chemical composition, crystallinity and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofiber. Bioresources 4(2):626–639

    CAS  Google Scholar 

  • Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos Part A Appl Sci 34(3):253–266

    Google Scholar 

  • Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci 54(2):163–174

    CAS  Google Scholar 

  • Khoo RZ, Chow WS, Ismail H (2018) Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: a review. Cellulose 25(8):4303–4330

    CAS  Google Scholar 

  • Kılınç AÇ, Köktaş S, Seki Y, Atagür M, Dalmış R, Erdogan UH, Göktaş AA, Seydibeyoglu MÖ (2018) Extraction and investigation of lightweight and porous natural fiber from Conium maculatum as a potential reinforcement for composite materials in transportation. Compos Part B Eng 140:1–8

    Google Scholar 

  • Kong C, Lee H, Park H (2016) Design and manufacturing of automobile hood using natural composite structure. Compos Part B Eng 91:18–26

    CAS  Google Scholar 

  • Korte S (2006) Processing-property relationships of hemp fibre. Master of Engineering Thesis, University of Canterbury

  • Kumar N, Das D (2017) Fibrous biocomposites from nettle (Girardinia diversifolia) and poly(lactic acid) fibers for automotive dash board panel application. Compos Part B Eng 130:54–63

    CAS  Google Scholar 

  • Kumar A, Srivastava A (2017) Preparation and mechanical properties of jute fiber reinforced epoxy composites. Ind Eng Manag 6(4):1–4

    Google Scholar 

  • Liu W, Mohanty AK, Drzal LT, Askel P, Misra M (2004) Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. J Mater Sci 39:1051–1054

    CAS  Google Scholar 

  • Liu Y, He Z, Shankle M, Tewolde H (2016) Compositional features of cotton plant biomass fractions characterized by attenuated total reflection Fourier transform infrared spectroscopy. Ind Crop Prod 79:283–286

    CAS  Google Scholar 

  • Maache M, Bezazi A, Amroune S, Scarpa F, Dufresne A (2017) Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydr Polym 171:163–172

    CAS  PubMed  Google Scholar 

  • Maldas D, Kokta BV, Daneault C (1989) Influence of coupling agents and treatments on the mechanical properties of cellulose fiber–polystyrene composites. J Appl Polym Sci 37(3):751–775

    CAS  Google Scholar 

  • Manimaran P, Senthamaraikannan P, Sanjay MR, Marichelvam MK, Jawaid M (2018) Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr Polym 181:650–658

    CAS  PubMed  Google Scholar 

  • Maslinda AB, Abdul Majid MS, Ridzuan MJM, Afendi M, Gibson AG (2017) Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos Struct 167:227–237

    Google Scholar 

  • Mooney C, Stolle-Smits T, Schols H, De Jong E (2001) Analysis of retted and non-retted flax fibres by chemical and enzymatic means. J Biotechnol 89(2–3):205–216

    CAS  PubMed  Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84(12):2222–2234

    CAS  Google Scholar 

  • Mylsamy K, Rajendran I (2010) Investigation on physicochemical and mechanical properties of raw and alkali treated Agave americana fiber. J Reinf Plast Comp 29(19):2925–2935

    CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340(3):417–428

    CAS  Google Scholar 

  • Ozacar M et al (2005) Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresour Technol 96:791–795

    PubMed  Google Scholar 

  • Patt R, Kordsachia O, Fehr J (2006) European hardwoods versus Eucalyptus globulus as a raw material for pulping. Wood Sci Technol 40(1):39–48

    CAS  Google Scholar 

  • Pereira Leite ALM, Zanon CD, Menegalli FC (2017) Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydr Polym 157:962–970

    Google Scholar 

  • Prithiviraj M, Muralikannan R, Senthamaraikannan P, Savaranakumar SS (2016) Characterization of new natural cellulosic fiber from the Perotis indica plant. Int J Polym Anal Charact 21(8):669–674

    CAS  Google Scholar 

  • Raghavendra G, Anil Kumar K, Kumar MH, Raghukumar B, Ojha S (2017) Moisture absorption behavior and its effect on the mechanical properties of jute-reinforced epoxy composite. Polym Compos 38(3):516–522

    CAS  Google Scholar 

  • Rajesh G, Prasad AVR (2016) Tensile properties of successive alkali treated short jute fiber reinforced PLA composites. Procedia Mat Sci 5:2188–2196

    Google Scholar 

  • Ridzuan MJM, Abdul Majid MS, Afendi M, Aqmariah Kanafiah SN, Zahri JM, Gibson GM (2016) Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites. Mater Des 8:839–847

    Google Scholar 

  • Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behaviour. Carbohydr Polym 81(1):83–92

    CAS  Google Scholar 

  • Rout J, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) The influence of fibre treatment on the performance of coir–polyester composites. Compos Sci Technol 61(9):1303–1310

    CAS  Google Scholar 

  • Sair S, Oushabi A, Kammouni A, Tanane O, Abboud Y, El Bouari A (2018) Mechanical and thermal conductivity properties of hemp fiber reinforced polyurethane composites. Case Stud Constr Mater 8:203–212

    Google Scholar 

  • Saravanakumar S, Kumaravel A, Nagarajan T, Sudhakar P, Baskaran R (2013) Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr Polym 92(2):1928–1933

    CAS  PubMed  Google Scholar 

  • Saravanakumar SS, Kumaravel A, Nagarajan T, Ganesh Moorthy I (2014) Investigation of physico-chemical properties of alkali treated Prosopis juliflora fibers. Int J Polym Anal Charact 19:309–317

    CAS  Google Scholar 

  • Sarikanat M, Seki Y, Sever K, Durmuşkahya C (2014) Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Compos Part B Eng 57:180–186

    CAS  Google Scholar 

  • Sarıkanat M, Seki Y, Sever K, Bozacı E, Demir A, Ozdogan E (2015) The effect of argon and air plasma treatment of flax fiber on mechanical properties of reinforced polyester composite. J Ind Text 45(6):152–1267

    Google Scholar 

  • Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    CAS  Google Scholar 

  • Seki Y, Sever K, Erden S, Sarıkanat M, Neser G, Ozes C (2012) Characterization of Luffa cylindrica fibers and the effect of water aging on the mechanical properties of its composite with polyester. J Appl Polym Sci 123:2330–2337

    CAS  Google Scholar 

  • Seki Y, Sarikanat M, Sever K, Durmuşkahya C (2013) Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Compos Part B Eng 44(1):517–523

    CAS  Google Scholar 

  • Seki Y, Seki Y, Sarıkanat M, Sever K, Durmuşkahya C, Bozacı E (2016) Evaluation of linden fibre as a potential reinforcement material for polymer composites. J Ind Text 45(6):1221–1238

    CAS  Google Scholar 

  • Seki Y, Kılınc AÇ, Dalmis R, Atagür M, Köktas S, Göktas AA, Celik E, Seydibeyoglu MÖ, Önay AB (2018) Surface modification of new cellulose fiber extracted from Conium maculatum plant: a comparative study. Cellulose 25(6):3267–3280

    CAS  Google Scholar 

  • Senthamaraikannan P, Kathiresan M (2018) Characterization of raw and alkali treated new natural cellulosic fiber fromCoccinia grandis L. Carbohydr Polym 186:332–43

    CAS  PubMed  Google Scholar 

  • Senthamaraikannan P, Saravanakumar SS, Arthanarieswaran VP, Sugumaran P (2015) Physicochemical properties of new cellulosic fibers from bark of Acacia planifrons. Int J Polym Anal Charact 21(3):207–213

    Google Scholar 

  • Sernek M, Kamke FA, Glasser WG (2004) Comparative analysis of inactivated wood surfaces. Holzforschung 58(1):22–31

    CAS  Google Scholar 

  • Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natura fiber composites. Compos Part A 39:1632–1637

    Google Scholar 

  • Sreenivasan VS, Ravindran SD, Manikandan V, Narayanasamy R (2011) Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres—an exploratory investigation. Mater Des 32(1):453–461

    CAS  Google Scholar 

  • Subramanian K, Kumar PS, Jeyapal P, Venkatesh N (2005) Characterization of ligno-cellulosic seed fibre from Wrightia Tinctoria plant for textile applications—an exploratory investigation. Eur Polym J 41(4):853–861

    CAS  Google Scholar 

  • Sukmawan R, Takagi H, Nakagaito AN (2016) Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber. Compos Part B Eng 84:9–16

    CAS  Google Scholar 

  • Synytsya A, Novak M (2014) Structural analysis of glucans. Ann Transl Med 2(2):1–14

    Google Scholar 

  • Tasdemir M, Biltekin H, Caneba GT (2009) Preparation and characterization of LDPE and PP—wood fiber composites. J Appl Polym Sci 112(5):3095–3102

    CAS  Google Scholar 

  • Tawakkal ISMA, Cran MJ, Bigger SW (2016) Interaction and quantification of thymol in active PLA-based materials containing natural fibers. J Appl Polym Sci 133(2):1–11

    Google Scholar 

  • Tengsuthiwat J, Asawapirom U, Siengchin S, Karger-Kocsis J (2018) Mechanical, thermal, and water absorption properties of melamine–formaldehyde/treated sisal fiber containing poly(lactic acid) composites. J Appl Polym Sci 135(2):1–9

    Google Scholar 

  • Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    CAS  PubMed  Google Scholar 

  • Uma Maheswari C, Reddy KO, Muzenda E, Guduri BR, Rajulu AV (2012) Extraction and characterization of cellulose microfibrils from agricultural residue—Cocos nucifera L. Biomass Bioenerg 46:555–563

    CAS  Google Scholar 

  • Xu G, Wang L, Liu J, Wu J (2013) FTIR and XPS analysis of the changes in bamboo chemical structure decayed by white-rot and brown-rot fungi. Appl Surf Sci 280:799–805

    CAS  Google Scholar 

  • Yeqiu L, Jinlian H, Yong Z, Zhuohong Y (2005) Surface modification of cotton fabric by grafting of polyurethane. Carbohydr Polym 61:276–280

    Google Scholar 

  • Zainudin ES, Yan LH, Haniffan WH, Jawaid M, Alothman OY (2014) Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites. Polym Compos 35(7):1418–1425

    CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank to the Center for Fabrication and Application of Electronic Materials in Dokuz Eylul University for their valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Seki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalmis, R., Köktaş, S., Seki, Y. et al. Characterization of a new natural cellulose based fiber from Hierochloe Odarata. Cellulose 27, 127–139 (2020). https://doi.org/10.1007/s10570-019-02779-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02779-1

Keywords

Navigation