Skip to main content
Log in

{[1,4-DHPyrazine][C(CN)3]2} as a New Nano Molten Salt Catalyst for the Synthesis of Novel Piperazine Based bis(4-hydroxy-2H-chromen-2-one) Derivatives

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this article a convenient method for the synthesis of novel piperazine based bis(4-hydroxy-2H-chromen-2-one) derivatives using pyrazine-1,4-diium tricyanomethanide {[1,4-DHPyrazine][C(CN)3]2} as a new nanostructured molten salt (NMS) catalyst has been described. These compounds were synthesized via Mannich type reaction between several aromatic aldehyde, piperazine and 4-hydroxycoumarin under solvent-free condition at room temperature. The NMS catalyst was fully characterized via Fourier transform infrared (FT-IR), nuclear magnetic resonance (1H NMR and 13C NMR), mass spectrometry, thermal gravimetric, derivative thermal gravimetric, differential thermal analysis, X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy analysis. The new compounds synthesized by using this NMS catalyst were also characterized by FT-IR, 1H NMR and 13C NMR, high-resolution mass spectrometry techniques. The new NMS catalyst simply recovers and can be reused several times without significant loss of catalytic activity. The major advantages of the described method in comparison to the classical reactions are low catalyst loading, short reaction time, high yields, simple isolation of product and reusability of the NMS catalyst.

Graphical Abstract

Pyrazine-1,4-diium tricyanomethanide as a nano molten salt catalyst was designed, synthesized and used for the synthesis of novel biological piperazine based bis(4-hydroxy-2H-chromen-2- one) derivatives as bioactive and drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9

Similar content being viewed by others

References

  1. Edlund C, Oh H, Nord CE (1999) Clin Microbiol Infect 1:51–53

    Article  Google Scholar 

  2. Chaudhary P, Kumar R, Verma AK, Singh D, Yadav V, Chhillar AK, Sharma GL, Chandra R (2006) Bioorg Med Chem 14:1819–1828

    Article  CAS  Google Scholar 

  3. Zhao HY, Prosser AR, Liottaa DC, Wilson LJ (2015) Bioorg Med Chem Lett 25:4950–4955

    Article  CAS  Google Scholar 

  4. Kumar A, Gupta MK, Kumar M (2011) Tetrahedron Lett 52:4521–4525

    Article  CAS  Google Scholar 

  5. Pallavi R, Saidulu K, Javed I, Srinivas O (2012) Tetrahedron Lett 53:5314–5317

    Article  Google Scholar 

  6. Chhanda M, Sunil R, Ray J (2012) Synth Commun 42:3077–3088

    Article  Google Scholar 

  7. Ghosh PP, Das AR (2012) Tetrahedron Lett 53:3140–3143

    Article  CAS  Google Scholar 

  8. Hatnapure GD, Keche AP, Rodge AH, Birajdar SS, Tale RH, Kamble VM (2012) Bioorg Med Chem Lett 22:6385–6390

    Article  CAS  Google Scholar 

  9. Beyeh NK, Valkonen A (2010) Org Lett 12:1392–1395

    Article  CAS  Google Scholar 

  10. Long JZ, Jin X, Adibekian A, Li WW, Cravatt BF (2010) J Med Chem 53:1830–1842

    Article  CAS  Google Scholar 

  11. Lee YB, Gong YD, Yoon H, Ahn CH, Jeon MK, Kong JY (2010) Bioorg Med Chem 18:7966–7974

    Article  CAS  Google Scholar 

  12. Dou D, He G, Mandadapu SR, Aravapalli S, Kim Y, Chang KO, Groutas WC (2012) Bioorg Med Chem Lett 22:377–379

    Article  CAS  Google Scholar 

  13. Patel RV, Kumari P, Rajani DP, Pannecouque C, De Clercq E, Chikhalia KH (2012) Future Med Chem 4:1053–1065

    Article  CAS  Google Scholar 

  14. Patel RV, Kumari P, Rajani DP (2012) J Enzyme Inhib Med Chem 27:370–374

    Article  CAS  Google Scholar 

  15. Xu J, Cao Y, Zhang J, Yu S, Zou Y, Chai X, Wu Q, Zhang D, Jiang Y, Sun Q (2011) Eur J Med Chem 46:3142–3148

    Article  CAS  Google Scholar 

  16. Ibezim E, Duchowicz PR, Ortiz EV, Castro EA (2012) Chemometr Intell Lab 110:81–88

    Article  CAS  Google Scholar 

  17. Johnson KE (2007) Electrochem Soc Interface 16:38–43

    CAS  Google Scholar 

  18. Adams DJ, McDonald IR (1974) J Phys C Solid State Phys 7:2761–2773

    Article  CAS  Google Scholar 

  19. Wilkes JS, Mamantov G, Marassi R (1987) Vol 200. D Reidel Co, Dordrecht, p 217

  20. Wasserscheid P, Keim W (2009) Angew Chem Int Ed 39:3772–3789

    Article  Google Scholar 

  21. Taheri A, Lai B, Cheng C, Gu Y (2015) Green Chem 17:812–816

    Article  CAS  Google Scholar 

  22. Taheri A, Liu C, Lai B, Cheng C, Pan X, Gu Y (2014) Green Chem 16:3715–3719

    Article  CAS  Google Scholar 

  23. Taheri A, Pan X, Liu C, Gu Y (2014) ChemSusChem 7:2094–2100

    Article  CAS  Google Scholar 

  24. García-Verdugo E, Altava B, Burguete MI, Lozano P, Luis SV (2015) Green Chem 17:2693–2713

    Article  Google Scholar 

  25. Luska KL, Migowski P, Leitner W (2015) Green Chem 17:3195–3206

    Article  CAS  Google Scholar 

  26. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Green Chem 8:325–327

    Article  CAS  Google Scholar 

  27. Van Rantwijk F, Lau RM, Sheldon RA (2003) Trends Biotechnol 21:131–138

    Article  Google Scholar 

  28. Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002) J Am Chem Soc 124:4228–4229

    Article  CAS  Google Scholar 

  29. Reichardt C (2007) Org Process Res 11:105–113

    Article  CAS  Google Scholar 

  30. Sundermeyer W (1965) Angew Chem Int Ed Engl 4:222–238

    Article  Google Scholar 

  31. Parvulescu VI, Hardacre C (2007) Chem Rev 107:2615–2665

    Article  CAS  Google Scholar 

  32. Welton T (1999) Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  33. Lei Z, Dai C, Chen B (2014) Chem Rev 114:1289–1326

    Article  CAS  Google Scholar 

  34. Hayes R, Gregory G, Warr GG, Atkin R (2015) Chem Rev 115:6357–6426

    Article  CAS  Google Scholar 

  35. Amarasekara AS (2016) Chem Rev 116:6133–6183

    Article  CAS  Google Scholar 

  36. Egorova KS, Ananikov VP (2014) ChemSusChem 7:336–360

    Article  CAS  Google Scholar 

  37. Frade RFM, Afonso CAM (2010) Hum Exp Toxicol 29:1038–1054

    Article  CAS  Google Scholar 

  38. Jastorff B, Störmann R, Ranke J, Mölter K, Stock F, Oberheitmann B, Hoffmann W, Hoffmann J, Nüchter M, Ondruschka B, Filser J (2003) Green Chem 5:136–142

    Article  CAS  Google Scholar 

  39. Kianpour E, Azizian S, Yarie M, Zolfigol MA, Bayat M (2016) Chem Eng J 295:500–508

    Article  CAS  Google Scholar 

  40. Zolfigol MA, Yarie M, Baghery S (2016) Synlett 27:1418–1422

    Article  CAS  Google Scholar 

  41. Zolfigol MA, Mansouri N, Baghery S (2016) Synlett 27:1511–1515

    Article  CAS  Google Scholar 

  42. Ghaderi H, Zolfigol MA, Bayat Y, Zarei M, Noroozizadeh E (2016) Synlett 27:2246–2250

    Article  CAS  Google Scholar 

  43. Zolfigol MA, Khazaei A, Moosavi-Zare AR, Zare A, Kruger HG, Asgari Z, Khakyzadeh V, Kazem-Rostami M (2012) J Org Chem 77:3640–3645

    Article  CAS  Google Scholar 

  44. Moosavi-Zare AR, Zolfigol MA, Zarei M, Noroozizadeh E, Beyzavi MH (2016) RSC Adv 6:89572–89577

    Article  CAS  Google Scholar 

  45. Moosavi-Zare AR, Zolfigol MA, Noroozizadeh E (2016) Synlett 27:1682–1684

    Article  CAS  Google Scholar 

  46. Zolfigol MA, Afsharnadery F, Baghery S, Salehzadeh S, Maleki F (2015) RSC Adv 5:75555–75568

    Article  CAS  Google Scholar 

  47. Zolfigol MA, Khazaei A, Alaie S, Baghery S, Maleki F, Bayat Y, Asghari A (2016) RSC Adv 6:58667–58679

    Article  CAS  Google Scholar 

  48. Zolfigol MA, Kiafar M, Yarie M, Taherpour A, Saeidirad M (2016) RSC Adv 6:50100–50111

    Article  CAS  Google Scholar 

  49. Verkade JMM, Van Hemert LJC, Quaedflieg PJLM, Rutjes FPJT (2008) Chem Soc Rev 37:29–41

    Article  CAS  Google Scholar 

  50. Hayashi Y, Urushima T, Shin M, Shoji M (2005) Tetrahedron 61:11393–11404

    Article  CAS  Google Scholar 

  51. Zolfigol MA, Bahrami-Nejad N, Afsharnadery F, Baghery S (2016) J Mol Liq 221:851–859

    Article  CAS  Google Scholar 

  52. Safaiee M, Zolfigol MA, Bahrami-Nejad N, Afsharnadery F, Baghery S (2015) RSC Adv 5:102340–102349

    Article  CAS  Google Scholar 

  53. Yu B, Xie JN, Zhong CL, Li W, He LN (2015) ACS Catal 8:3940–3944

    Article  Google Scholar 

Download references

Acknowledgements

We thank Bu-Ali Sina University and Iran National Science Foundation (INSF) for financial support (Grant of Allameh Tabataba’i’s Award, Grant Number BN093), and National Elites Foundation to our research groups.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saeed Baghery or Mohammad Ali Zolfigol.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 11252 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghery, S., Zolfigol, M.A., Schirhagl, R. et al. {[1,4-DHPyrazine][C(CN)3]2} as a New Nano Molten Salt Catalyst for the Synthesis of Novel Piperazine Based bis(4-hydroxy-2H-chromen-2-one) Derivatives. Catal Lett 147, 2083–2099 (2017). https://doi.org/10.1007/s10562-017-2096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2096-3

Keyword

Navigation