Skip to main content
Log in

Phenology of Cupressaceae urban infrastructure related to its pollen content and meteorological variables

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Cupressaceae pollen is one of the major airborne allergens of the Mediterranean region and in other regions around the world. Pollen production of these species causes considerable allergic problems during winter, being this type of pollen the most abundant in this period of the year. This work aims to relate phenology, meteorology and airborne pollen records in these species. Aerobiological sampling was carried out in Badajoz (SW Spain) from 2016 to 2018 using Hirst-type volumetric sampler. Pollination phenology was studied in 50 specimens, ten of Cupressus macrocarpa, ten of Cupressus arizonica, 15 of Cupressus sempervirens and 15 of Platycladus orientalis with a frequency of 3–4 days on average during the months of January to March. In all cases, five specimens were in the surrounding of pollen station and at least five of them 4 km apart. For phenology, BBCH methodology was used. Daily data for the whole period and hourly data for the last 2 years were analyzed, including pollen records and meteorology. Comparison between pollen records and sources distribution was assessed. Main pollen season lasted on average 91 (89–94) days. In all the years, the peaks of phenology of the different species can be matched with peaks of airborne pollen records, considering that rain can prevent a more precise correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aboulaich, N., Bouziane, H., El Kadiri, M., & Riadi, H. (2008). Male phenology and pollen production of Cupressus sempervirens in Tetouan (Morocco). Grana, 47, 130–138.

    Google Scholar 

  • AEMET. (2019). Climate statistics. Badajoz Airport (19812010). Agencia Estatal de Meteorología. Gobierno de España.

  • Aira, M., Dopazo, A., & Jato, M. J. (2001). Aerobiological monitoring of Cupressaceae pollen in Santiago de Compostela (NW Iberian Peninsula) over six years. Aerobiologia, 17, 319–325.

    Google Scholar 

  • Belmonte, J., Canela, M., Guardia, R., Guardia, R. A., Sbai, L., Vendrell, M., et al. (1999). Aerobiological dynamics of the Cupressaceae pollen in Spain, 1992–98. Polen, 10, 27–38.

    Google Scholar 

  • Bikarma, S., Sultan, P., & Singh, Bedi Y. (2018). Juniperus chinensis L. (Cupressaceae): A new taxa record for Himalaya and Extension of Geographic distribution in South Asia. National Academy Science Letters, 41(1), 69–73.

    Google Scholar 

  • Bortenschlager, S. (1989). Aspects of pollen morphology in the Cupressaceae. Grana, 29(2), 129–138.

    Google Scholar 

  • Bousquet, J., Cour, P., Guerin, B., & Michael, F. B. (1984). Allergy in the Mediterranean area. I. Pollen counts and pollinosis of Montpellier. Clinical and Experimental Allergy, 14(3), 249–258.

    CAS  Google Scholar 

  • Bousquet, J., Knani, J., Heijaoui, A., Fernando, R., Cour, P., Dhivert, H., et al. (1993). Heterogeneity of atop. I. Clinical and immunologic characteristics of patients allergic to cypress pollen. Allergy, 48(3), 183–188.

    CAS  Google Scholar 

  • Burbach, G. J., Heinzerling, L. M., & Hedenharther, G. (2009). GA2LEN skin test study II: Clinical relevance of inhalant allergen sensitizations in Europe. Allergy, 64, 1507–1515.

    CAS  Google Scholar 

  • Burr, M. L. (1999). Grass pollen: Trends and predictions. Clinical & Experimental Allergy, 29, 735–738.

    CAS  Google Scholar 

  • Caballero, T., Romualdo, L., Crespo, J. F., Pascual, C., Muñoz-Pereire, M., & Martín-Esteban, M. (1996). Cupressaceae pollinosis in the Madrid area. Clinical and Experimental Allergy, 26, 197–201.

    CAS  Google Scholar 

  • Cabrera, M., & Subiza, J. (2008). Polinosis de invierno: la contaminación y el cambio climático agudizan y prolongan los síntomas. Alergia, 2, 1–8.

    Google Scholar 

  • Caiaffa, M. F., Machia, L., Strada, S., Bariletto, G., Scarpelli, F., & Tursi, A. (1993). Airborne Cupressaceae pollen in Southern Italy. Annals of Allergy, 71, 45–50.

    CAS  Google Scholar 

  • Cariñanos, P., Galán, C., Alcázar, P., & Domínguez, E. (2000). Meteorological phenomena affecting the presence of solid particles suspended in the air during winter. International Journal of Biometeorology, 44, 6–10.

    Google Scholar 

  • Charpin, D., Calleja, M., Lahoz, C., Pi-chot, C., & Waisel, Y. (2005). Allergy to cypress pollen. Allergy, 60, 293–301.

    CAS  Google Scholar 

  • Charpin, D., Pichot, C., Belmonte, J., Sutra, J. P., Zidkova, J., Chanez, P., et al. (2017). Cypress pollinosis: From tree to clinic. Clinical Reviews in Allergy and Immunology, 2017, 1–22.

    Google Scholar 

  • Charpin, D., Pichot, C., Belmonte, J., Sutra, J. P., Zidkova, J., Chanez, P., et al. (2019). Cypress pollinosis: From tree to clinic. Clinical Reviews in Allergy and Immunology, 56(2), 174–195.

    CAS  Google Scholar 

  • Chhaya, B., & Johri, M. (1997). The gymnosperms. Berlin: Springer.

    Google Scholar 

  • Christenhusz, M. J. M., Reveal, J. L., Farjon, A., Gardner, M. F., Mill, R. R., & Chase, M. (2011). A new classification and linear sequence of extant gymnosperms. Phytotaxa, 19, 55–70.

    Google Scholar 

  • D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62(9), 976–990.

    Google Scholar 

  • Damialis, A., Gioulekas, D., Lazopoulou, C., Balafoutis, C., & Vokou, D. (2005). Transport of airborne pollen into the city of Thessaloniki: The effects of wind direction, speed and persistence. International Journal of Biometeorology, 49, 139–145.

    Google Scholar 

  • Díaz de la Guardia, C., Alba, F., De Linares, C., Nieto-Lugilde, D., & López-Caballero, J. (2006). Aerobiological and allergenic analysis of Cupressaceae pollen in Granada (Southern Spain). Journal of Investigational Allergology and Clinical Immunology, 16(1), 24–33.

    Google Scholar 

  • Docampo, S., Recio, M., Trigo, M. M., Melgar, M., & Cabezudo, B. (2007). Risk of pollen allergy in Nerja (Southern Spain): A pollen calendar. Aerobiologia, 23, 189–199.

    Google Scholar 

  • Emberlin, J., Mullins, J., Corden, J., Jones, S., Millington, W., Brooke, M., et al. (1999). Regional variations in grass pollen seasons in the UK, long-term trends and forecast models. Clinical and Experimental Allergy, 29(3), 347–356.

    CAS  Google Scholar 

  • Fernández-Rodríguez, S., Tormo-Molina, R., Maya-Manzano, J. M., Silva-Palacios, I., & Gonzalo-Garijo, Á. (2014). Comparative study of the effect of distance on the daily and hourly pollen counts in a city in the south-western Iberian Peninsula. Aerobiologia, 30, 173–187.

    Google Scholar 

  • Frenguelli, G., Bricchi, E., Romano, B., Mincigrucci, G., & Spicksma, F. (1989). A predictive study of the beginning of the pollen season for Gramineae and Olea europaea L. Aerobiologia, 5, 64–70.

    Google Scholar 

  • Galán C., Cariñanos P., Alcázar P., & Dominguez-Vilches, E. (2007). Spanish aerobiology network (REA) management and quality manual. Servicio de Publicaciones Universidad de Córdoba. ISBN 978-84-690-6353-8.

  • Galán, C., Cuevas, J., Infante, F., & Domínguez-Vilches, E. (1989). Seasonal and diurnal variation of pollen from Gramineae in the atmosphere of Córdoba (Spain). Allergologic et Immunopathology, 17(5), 245–249.

    Google Scholar 

  • Galán, C., Fuillerat, M. J., Comtois, P., & Domínguez-Vilches, E. (1998). Predictive study of Cupressaceae pollen season onset, severity, máximum value and maximum value date. Aerobiologia, 14, 1995–1999.

    Google Scholar 

  • García-Mozo, H., Chuine, I., Aira, M. J., Belmonte, J., Bermejo, D., Díaz de la Guardia, C., et al. (2008). Regional phenological models for forecasting the start and the end of the Quercus pollen season in Spain. Agricultural and Forest Meteorology, 148, 372–380.

    Google Scholar 

  • Guerra, F., Daza, J. C., Miguel, R., Moreno, C., Galán, C., Domínguez, E., et al. (1996). Sensitivity to Cupressus: Allergenic significance in Córdoba (Spain). Journal of Investigational Allergology and Clinical Immunology, 6(2), 117–120.

    CAS  Google Scholar 

  • Hall, S. (1992). Comparative pollen influx at a nine-array in the grand prairie of Northern Texas. The Texas Journal of Science, 44, 469–474.

    Google Scholar 

  • Hidalgo, P., Galán, G., & Domínguez, E. (2003). Male phenology of the three species of Cupressus: Correlation with airborne pollen. Trees, 17(4), 336–344.

    Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.

    Google Scholar 

  • Hrabina, M., Dumur, J. P., Sicard, H., Viatte, A., & Andre, C. (2003). Diagnosis of cypress pollen allergy: In vivo and in vitro standardization of a Juniperus ashei pollen extract. Allergy, 58(8), 808–813.

    CAS  Google Scholar 

  • James, W. B. (2015). The gymnosperms handbook. A practical guide to extant families and genera of the world. Hertford: Plant Gateway.

    Google Scholar 

  • Katz, D., Dzul, A., Kendel, A., & Batterman, S. (2019). Effect of intra-urban temperature variation on tree flowering phenology, airborne pollen, and measurement error in epidemiological studies of allergenic pollen. Science of the Total Environment, 653, 1213–1222.

    CAS  Google Scholar 

  • Keynan, N., Waisel, Y., Shomerilan, A., Goren, A., & Brener, S. (1991). Annual variations of airborne pollen in the coastal plain of Israel. Grana, 30, 477–480.

    Google Scholar 

  • Lahoz, C., Cortageno, I., Civantos, E., López, E., Cárdaba, B., Llanes, E., et al. (2003). Alergenos de las Cupresáceas. Allergology and Clinical Immunology, 18(3), 35–39.

    Google Scholar 

  • Maya-Manzano, J. M., Sadyś, M., Tormo Molina, R., Fernández Rodríguez, S., Gonzalo Garijo, A., Oteros Moreno, J. A., et al. (2017b). Relationship between airborne pollen grains, wind direction and land cover using GIS and circular statistics. Science of the Total Environment, 584–585, 603–613.

    Google Scholar 

  • Maya-Manzano, J. M., Tormo Molina, R., Fernández Rodríguez, S., Silva Palacios, I., & Gonzalo Garijo, A. (2017c). Distribution of ornamental urban trees and their influence on airborne pollen in the SW of Iberian Peninsula. Landscape and Urban Planning, 157, 434–446.

    Google Scholar 

  • Meier, U. (1997). BBCH-monograph: Growth stages of plants (p. 622). Berlin: Blackwell Wissenschafts-Verlag. ISBN 3-8263-3152-4.

    Google Scholar 

  • Meier, U. (2001). Growth stages of mono-and dicotyledonous plants. BBCH monograph (2nd Ed.). Federal Biological Research Centre for Agriculture and Forestry. http://pub.jki.bund.de/index.php/BBCH/article/view/461.

  • Miyao, M., Furuta, M., Ozawa, K., Kondo, T., Sakakibara, H., Ishihara, S., et al. (1993). Morbidity of allergenic rhinitis based on the National Health Insurance records of Japan. The Tohoku Journal of Experimental Medicine, 169(4), 345–350.

    CAS  Google Scholar 

  • Monroy-Colín, A., Silva-Palacios, I., Tormo-Molina, R., Maya-Manzano, J. M., & Fernández-Rodríguez, S. (2018). Environmental analysis of airborne pollen occurrence, pollen source distribution and phenology of Fraxinus angustifolia. Aerobiologia, 34(4), 269–283.

    Google Scholar 

  • Moral de Gregorio, A. (2003). Aerobiología y polinosis por Cupresáceas en España. Alergología e Inmunología Clínica, 18(Extraordinario 3), 24–39.

    Google Scholar 

  • Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20(3), 179–182.

    Google Scholar 

  • Norris-Hill, J., & Emberlin, J. (1991). Diurnal variation of pollen concentration in the air of north-central London. Grana, 30, 229–234.

    Google Scholar 

  • NSI. (2018). Population by cities. Madrid: National Institute of Statistics.

    Google Scholar 

  • Okuyama, Y., Matsumoto, K., Okochi, H., & Igawa, M. (2007). Adsorption of air pollutants on the grain surface of Japanese cedar pollen. Atmospheric Environment, 41(2), 253–260.

    CAS  Google Scholar 

  • Pace, L., Boccacci, L., Casilli, M., Di Carlo, P., & Fattorini, S. (2017). Correlations between weather conditions and airborne pollen concentration and diversity in a Mediterranean high-altitude site disclose unexpected temporal patterns. Aerobiologia, 34, 75–87.

    Google Scholar 

  • Page, C. N. (1990). Cupressaceae. In K. U. Kramer & P. S. Green (Eds.), Pteridophytes and gymnosperms. The families and genera of vascular plants (Vol. 1). Berlin: Springer.

    Google Scholar 

  • Pahus, L., Gouitaa, M., Sofalvi, T., Alagha, K., Gras, D., Chanez, P., et al. (2018). Cypress pollen allergy is responsible for two distinct phenotypes of allergic rhinitis different from other pollinosis. European Annals of Allergy and Clinical Immunology, 50(1), 28–35.

    CAS  Google Scholar 

  • Pérez-Badia, R., Vaquero, C., Sardinero, S., Galán, C., & García-Mozo, H. (2010). Intradiurnal variations of allergenic tree pollen in the atmosphere of Toledo (Central Spain). Annals of Agricultural Environmental Medicine, 17, 37–43.

    Google Scholar 

  • Recio, M., Cabezudo, B., Trigo, M. M., & Toro, J. F. (1998). Pollen calendar of Malaga (Southern Span), 1991–1995. Aerobiologia, 14(2), 101–107.

    Google Scholar 

  • Rodríguez-Rajo, F., Jato, V., & Aira, M. (2003). Pollen content in the atmosphere of Lugo (NW Spain) with reference to meteorological factors (1999–2001). Aerobiologia, 19, 213–225.

    Google Scholar 

  • Schulzz, C., Knopf, P., & Stützel, T. H. (2005). Identification key to the Cypress family (Cupressaceae). Feddes Repertorium, 116, 96–146.

    Google Scholar 

  • Silva-Palacios, I., Fernández-Rodríguez, S., Durán-Barroso, P., Tormo-Molina, R., Maya-Manzano, J. M., & Gonzalo-Garijo, Á. (2016). Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula. International Journal of Biometeorology, 60(2), 297–306.

    Google Scholar 

  • Solomon, W., & Mathews, K. (1978). Aerobiology and inhalant allergens. In E. Middleton, C. Reed, & E. Ellis (Eds.), Allergy principles and practice (Vol. 2). St. Louis: Mosby.

    Google Scholar 

  • Staffolani, L., Velasco-Jiménez, M. J., Galán, C., & Hruska, K. (2011). Allergenicity of the ornamental urban flora: Ecological and aerobiological analyses in Córdoba (Spain) and Ascoli Piceno (Italy). Aerobiologia, 27(3), 229–246.

    Google Scholar 

  • Suarez-Cervera, M., Castells, T., Vega-Maray, A., Civantos, E., del Pozo, V., Fernandez-Gonzalez, D., et al. (2008). Effects of air pollution on cup a 3 allergen in Cupressus arizonica pollen grains. Annals of Allergy, Asthma & Immunology, 101(1), 57–66.

    Google Scholar 

  • Subiza, J., Brito, F., & Pola, J. (1998). Pólenes alergénicos y polinosis en 12 ciudades españolas. Revista Española de Alergología e Inmunología Clínica, 13, 45–58.

    Google Scholar 

  • Tedeschini, E., Rodríguez-Rajo, F. J., Caramiello, R., Jato, V., & Franguelli, G. (2006). The influence of climate changes in Platanus spp. Pollination in Spain and Italy. Grana, 2006(45), 222–229.

    Google Scholar 

  • Tormo-Molina, R., Maya-Mannzano, J. M., Fernández-Rodriguez, S., Gonzalo, Á., & Silva, I. (2013). Influence of environmental factors on measurements with Hirst pollen traps. Grana, 52, 59–70.

    Google Scholar 

  • Tormo-Molina, R., Maya-Manzano, J. M., Silva-Palacios, I., Fernández-Rodríguez, S., & Gonzalo-Garijo, A. (2015). Flower production and phenology in Dactylis glomerata. Aerobiologia, 31(4), 469–479.

    Google Scholar 

  • Tormo-Molina, R., Silva, I., Gonzalo, A., Moreno, A., Pérez, R., & Fernández, S. (2011). Phenological records as a complement to aerobiological data. International Journal of Biometeorology, 55, 51–65.

    Google Scholar 

  • Tormo-Molina, R., Silva, I., Muñoz, A., Tavira, J., & Moreno, A. (2001). Environmental factors affecting airborne pollen concentration in anemophilous species of Plantago. Annals of Botany, 87, 1–8.

    Google Scholar 

  • Torrigiani, T., Cecchi, L., Morabito, M., Onorari, M., Domeneghetti, M. P., & Orlandini, S. (2006). Influence of meteorological conditions on male flower phenology of Cupressus sempervirens and correlation with pollen production in Florence. Trees, 21, 507–514.

    Google Scholar 

  • Torrigiani, T., Moriondo, M., Bindi, M., Cecchi, L., & Orlandini, S. (2007). A phenological model to evaluate the impact of the expected climate change on Cupressaceae main pollen season in Central Italy. Italian Journal of Agrometeorology, Speciale Fenologia,(3), 45–51.

  • Tortajada, B., & Mateu, I. (2008). Cupressaceae pollen in the atmosphere of Valencia (East of Spain) and relationships with meteorological parameters. Polen, 18, 51–59.

    Google Scholar 

  • Velasco-Jiménez, M. J., Alcázar, P., Valle, A., Trigo, M. M., Minero, F., Dominguez-Vilches, E., et al. (2013). Aerobiological and ecological study of the potentially allergenic ornamental plants in south Spain. Aerobiologia, 30(1), 91–101.

    Google Scholar 

  • Wang, Q., Morita, J. N. S., Wu, D., Gong, X., Suzuki, M., Miwa, M., et al. (2010). Field investigation on modification of Japanese cedar pollen allergen in urban air-polluted area. World Academy of Science, Engineering and Technology, 69, 624–629.

    Google Scholar 

  • Water, P., & Levetin, E. (2001). The contribution of upwind pollen sources to the characterization of Juniperus ashei phenology. Grana, 40, 133–141.

    Google Scholar 

  • Watson, F., & Eckenwalder, J. E. (1993). Cupressaceae. In Flora of North America Editorial Committee (Eds.), Flora of North America North of Mexico, Vol. 2. Oxford: Oxford University Press.

  • Zerboni, R., Arrigioni, P. V., Manfredi, M., Rizzotto, M., Paoletti, L., & Ricceri, C. (1991). Geobotanical and phenological monitoring of allergenic pollen grains in the Florence area. Grana, 30, 357–363.

    Google Scholar 

Download references

Acknowledgements

This work was possible by funds from research project PRIIB16029 and research group said GR18113 financed by the Regional Government, Junta de Extremadura (Spain). Particularly, the National Commission of Science and Technology of Mexico (CONACyT) funded A.M.C and Irish Environmental Protection Agency (EPA Program 2014–2020, Climate, 2017) funded J.M.M.M during part of the realization of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fernández-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monroy-Colín, A., Maya-Manzano, J.M., Silva-Palacios, I. et al. Phenology of Cupressaceae urban infrastructure related to its pollen content and meteorological variables. Aerobiologia 36, 459–479 (2020). https://doi.org/10.1007/s10453-020-09645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-020-09645-9

Keywords

Navigation