Skip to main content

Advertisement

Log in

The Response of Growth and Yield of Canola Genotypes to Humic Acid Application in Different Plant Densities

Reaktion von Wachstum und Ertrag von Rapsgenotypen auf die Anwendung von Huminsäure bei verschiedenen Pflanzendichten

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

To determine the effect of plant density and humic acid on canola yield, a 2-year field experiment was conducted as a factorial split-plot during the 2014–2016 cropping years. The factors included two humic acid levels (humic acid solution at 3/1000 [v/v] concentration and distilled water) and three plant densities (40, 60, and 80 plants per m2) in the main plots and six canola genotypes (Ahmadi, Okapi, Opera, Nafis, Karaj1, and SW102) in the subplot. The results showed a significant decrease in the grain and oil yield when plant density increased from 40 to 80 plants per m2, by 57 and 59%, respectively. The oil quality was also effected by the plant density, so the erusic acid and glucosinolate contents increased twofold at 80 plants m2. The grain and oil yield were significantly higher in plants treated with humic acid compared to controls, by 5.4 and 5.8%, respectively. Moreover, the foliar application of humic acid enhanced the oil quality of canola genotypes through a significant decrease in erusic acid and glucosinolate contents. However, there was no significant decreasing effect of humic acid on the density-induced yield loss and the oil yield reduction. Therefore, the increase in canola yield might be achieved by selecting the optimum density and improving the nutritional condition of the soil.

Zusammenfassung

Um den Einfluss von Pflanzendichte und Huminsäure auf den Rapsertrag zu bestimmen, wurde ein 2‑jähriger Feldversuch im faktoriellen Split-Plot-Design während der Anbaujahre 2014–2016 durchgeführt. Die Faktoren umfassten 2 Huminsäurestufen (Huminsäurelösung mit einer Konzentration von 3/1000 [v/v] und destilliertes Wasser) und 3 Pflanzendichten (40, 60 und 80 Pflanzen pro m2) in den Hauptplots und 6 Rapsgenotypen (Ahmadi, Okapi, Opera, Nafis, Karaj1 und SW102) im Subplot. Als Ergebnis zeigte sich ein signifikanter Rückgang des Getreide- und Ölertrags bei einer Erhöhung der Pflanzendichte von 40 auf 80 Pflanzen pro m2 um 57 % bzw. 59 %. Die Ölqualität wurde auch durch die Pflanzendichte beeinflusst, sodass der Gehalt an Erucasäure und Glucosinolaten bei 80 Pflanzen pro m2 um das 2‑Fache anstieg. Der Getreide- und Ölertrag war bei den mit Huminsäure behandelten Pflanzen signifikant höher als bei den Kontrollen, und zwar um 5,4 % bzw. 5,8 %. Darüber hinaus verbesserte die Blattbehandlung mit Huminsäure die Ölqualität der Rapsgenotypen durch eine signifikante Abnahme des Erucasäure- und Glucosinolatgehalts. Es konnte nicht festgestellt werden, dass Huminsäure sich signifikant darauf auswirkt, dass der dichtebedingte Ertragsverlust und die Verringerung des Ölertrags abgemildert werden. Daher könnte die Erhöhung des Rapsertrags durch die Wahl der optimalen Pflanzendichte und die Verbesserung des Nährstoffzustands des Bodens erreicht worden sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antonietta M, Fanello DD, Acciaresi HA, Guiamet JJ (2014) Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crop Res 155:111–119. https://doi.org/10.1016/J.FCR.2013.09.016

    Article  Google Scholar 

  • Atiyeh R, Lee S, Edwards C, Arancon N (2002) The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour Technol 84:7–14

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL, Aguiar NO et al (2015) Humic and fulvic acids as biostimulants in horticulture. Sci Hortic 196:15–27. https://doi.org/10.1016/J.SCIENTA.2015.09.013

    Article  CAS  Google Scholar 

  • Chen P, Ji P, Li SL (2008) Effects of feeding extruded soybean, ground canola seed and whole cottonseed on ruminal fermentation, performance and milk fatty acid profile in early lactation dairy cows. Asian Australas J Anim Sci 21:204–213. https://doi.org/10.5713/ajas.2008.70079

    Article  CAS  Google Scholar 

  • Colnago LA, Azeredo RBV, Marchi Netto A et al (2011) Rapid analyses of oil and fat content in agri-food products using continuous wave free precession time domain NMR. Magn Reson Chem 49:S113–S120. https://doi.org/10.1002/mrc.2841

    Article  CAS  PubMed  Google Scholar 

  • Delfine S, Tognetti R, Desiderio E, Alvino A (2005) Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron Sustain Dev 25:183–191

    Article  CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Dursun A, Güvenç I, Turan M (2013) Effects of different levels of humic acid on seedling growth and macro and micronutrient contents of tomato and eggplant. Acta Agrobot 55:81–88. https://doi.org/10.5586/aa.2002.046

    Article  Google Scholar 

  • Edwards JT, Purcell LC (2005) Soybean yield and biomass responses to increasing plant population among diverse maturity groups. Crop Sci 45:1770. https://doi.org/10.2135/cropsci2004.0564

    Article  Google Scholar 

  • El-Bassiouny H, Bakry B, Attia A, Allah MMA (2014) Physiological role of humic acid and nicotinamide on improving plant growth, yield, and mineral nutrient of wheat (Triticum durum) grown under newly reclaimed. Agric Sci 5:687

    CAS  Google Scholar 

  • El-Desuki M (2004) Response of onion plants to humic acid and mineral fertilizers application. Ann Agric Sci 42:1955–1964

    Google Scholar 

  • El-Ghozoli MA (2003) Influence of humic acid on faba bean plants grown in cadmium polluted soil. Ann Agric Sci 41:1787–1800

    Google Scholar 

  • FAO (2015) FAO land and plant nutrition management service. Food Agric Organ United Nations, Rome

    Google Scholar 

  • French RJ, Seymour M, Malik RS (2016) Plant density response and optimum crop densities for canola (Brassica napus L.) in Western Australia. Crop Pasture Sci 67:397. https://doi.org/10.1071/CP15373

    Article  Google Scholar 

  • Heil CA (2005) Influence of humic, fulvic and hydrophilic acids on the growth, photosynthesis and respiration of the dinoflagellate Prorocentrum minimum (Pavillard) Schiller. Harmful Algae 4:603–618. https://doi.org/10.1016/J.HAL.2004.08.010

    Article  CAS  Google Scholar 

  • Henson IE, Mahalakshmi V, Bidinger FR, Alagarswamy G (1981) Genotypic variation in pearl millet (Pennisetum americanum (L.) Leeke), in the ability to accumulate abscisic acid in response to water stress. J Exp Bot 32:899–910

    Article  CAS  Google Scholar 

  • Ibrahim EA, Ramadan WA (2015) Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Sci Hortic 184:101–105. https://doi.org/10.1016/j.scienta.2014.11.010

    Article  CAS  Google Scholar 

  • Johnson BL, Hanson BK (2003) Row-spacing interactions on spring canola performance in the northern Great Plains. Agron J 95:703–708. https://doi.org/10.2134/AGRONJ2003.7030

    Article  Google Scholar 

  • Karakurt Y, Unlu H, Unlu H, Padem H (2009) The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agric Scand B 59:233–237. https://doi.org/10.1080/09064710802022952

    Article  CAS  Google Scholar 

  • Khan S, Anwar S, Kuai J et al (2018) Alteration in yield and oil quality traits of winter rapeseed by lodging at different planting density and nitrogen rates. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-017-18734-8

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592. https://doi.org/10.1042/bst0110591

    Article  CAS  Google Scholar 

  • Meganid AS, Al-Zahrani HS, El-Metwally MS (2002) Effect of humic acid application on growth and chlorophyll contents of common bean plants (Phaseolus vulgaris L.) under salinity stress conditions. Int J Innov Res Sci Eng Technol 4:2651–2660

    Google Scholar 

  • Mora V, Baigorri R, Bacaicoa E et al (2012) The humic acid-induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber. Environ Exp Bot 76:24–32. https://doi.org/10.1016/J.ENVEXPBOT.2011.10.001

    Article  CAS  Google Scholar 

  • Moraditochaee M (2012) Effects of humic acid foliar spraying and nitrogen fertilizer management on yield of peanut (Arachis hypogaea L.) in Iran. ARPN J Agric Biol Sci 7:289–293

    CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biol Biochem 34:1527–1536. https://doi.org/10.1016/S0038-0717(02)00174-8

    Article  CAS  Google Scholar 

  • Naseri R, Kazemi E, Mahmoodian E (2012) Study on effects of different plant density on seed yield, oil and protein content of four canola cultivars in western Iran. Int J Agric Crop Sci 4:70–78

    Google Scholar 

  • Neri D, Lodolini E, Savini G et al (2002) Foliar application of humic acids on strawberry (cv Onda). Acta Hortic 594:297–302

    Article  CAS  Google Scholar 

  • Rashid A (2003) Global information and early warning system on food and agriculture: appropriate technology and institutional development challenges. In: Early warning systems for natural disaster reduction. Springer, Berlin, Heidelberg, pp 337–344

    Chapter  Google Scholar 

  • Reiahisamani N, Esmaeili M, Khoshkholgh Sima NA et al (2018) Assessment of the oil content of the seed produced by Salicornia L., along with its ability to produce forage in saline soils. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-018-0661-2

    Article  Google Scholar 

  • Ruuska S, Schwender J, Ohlrogge J (2004) The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol 136:2700–2709

    Article  CAS  Google Scholar 

  • Sadeghi S, Rahnavard A, Ashrafi ZY (2009) The effect of plant density and sowing date on yield of Basil (Ocimum basilicum L.) in Iran. J Agric Technol 5:413–422

    Google Scholar 

  • Said-Al Ahl H, El Gendy AG, Ea O (2016) Humic acid and indole acetic acid affect yield and essential oil of dill grown under two different locations in Egypt. Int J Pharm Pharm Sci 8:146–157

    Article  CAS  Google Scholar 

  • Sani B (2014) Foliar application of humic acid on plant height in canola. APCBEE Procedia 8:82–86. https://doi.org/10.1016/J.APCBEE.2014.03.005

    Article  CAS  Google Scholar 

  • Sanli A, Karadogan T, Tonguc M (2013) Effects of leonardite applications on yield and some quality parameters of potatoes (Solanum tuberosum L.). Turk J Field Crops 18:20–26

    Google Scholar 

  • Saruhan V, Kusvuran A, Kokten K (2011) The effect of different replications of humic acid fertilization on yield performances of common vetch (Vicia sativa L.). Afr J Biotechnol 10:5587–5592

    CAS  Google Scholar 

  • Schiavon M, Pizzeghello D, Muscolo A et al (2010) High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J Chem Ecol 36:662–669. https://doi.org/10.1007/s10886-010-9790-6

    Article  CAS  PubMed  Google Scholar 

  • Tehranifar A, Ameri A (2014) Effect of humic acid on nutrient uptake and physiological characteristics of Fragaria ×Ananassa “Camarosa.”. Acta Hortic. https://doi.org/10.17660/ActaHortic.2014.1049.54

    Article  Google Scholar 

  • Ulukan H (2008) Effect of soil applied humic acid at different sowing times on some yield components in wheat (Triticum spp.) hybrids. Int J Bot 4:164–175

    Article  Google Scholar 

  • Wittkop B, Snowdon RJ, Friedt W (2009) Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170:131–140. https://doi.org/10.1007/s10681-009-9940-5

    Article  Google Scholar 

  • Xu D‑B, Wang Q‑J, Wu Y‑C et al (2012) Humic-like substances from different compost extracts could significantly promote cucumber growth. Pedosphere 22:815–824. https://doi.org/10.1016/S1002-0160(12)60067-8

    Article  CAS  Google Scholar 

  • Zhang X, Ervin EH (2004) Cytokinin-containing seaweed and Humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci 44:1737. https://doi.org/10.2135/cropsci2004.1737

    Article  CAS  Google Scholar 

  • Zhao XJ, Song YY, Yue XL et al (2017) Effect of different potassium levels on the growth of bok choy under negative pressure. Sci Agric Sin 50:689–697

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Sam-Daliri.

Ethics declarations

Conflict of interest

A. Nasiri, M. Sam-Daliri, A. Shirani-Rad, A. Mousavi, and H. Jabbari declare that they have no competing interests.

Caption Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, A., Sam-Daliri, M., Shirani-Rad, A. et al. The Response of Growth and Yield of Canola Genotypes to Humic Acid Application in Different Plant Densities. Gesunde Pflanzen 73, 17–27 (2021). https://doi.org/10.1007/s10343-020-00524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-020-00524-4

Keywords

Schlüsselwörter

Navigation