Skip to main content
Log in

The effect of landscape context on the biological control of Sitobion avenae: temporal partitioning response of natural enemy guilds

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Landscape contexts with high complexity may promote diversity of natural enemies, although the effect on biocontrol remains under discussion. Although biocontrol of Sitobion avenae is a well-studied system, little is known about the temporal effect of landscape context on the natural enemy assemblages. In a previous study, we showed a positive effect of predators in the decline of aphids; however, this effect had a temporal pattern responding to different landscape contexts. We study here two contrasting agricultural contexts, high landscape complexity with low intensification and low complexity with high intensification. Abundance and diversity of parasitoids was examined via a molecular approach, using a combination of diagnostic multiplex and singleplex PCR assays to test field-collected samples of S. avenae with genus- and species-specific parasitoid primer pairs. Temporal population dynamics were analyzed and differences related to these two contexts were observed. Parasitism rates were greater in the mid-sampling dates in high intensification simple landscapes, which were not observed for the low intensification complex landscapes. According to our results, we suggest that the greater landscape complexity in combination with a low agricultural intensification increase negative interactions for parasitoid population built-up; however, early predation by coccinellids was able to control the aphid populations. In contrast, under a simple landscape context with a high agricultural intensification, our results suggest an important role of parasitism with a complementary effect of late predation. We highlight the importance of different natural enemy guilds and their temporal dynamics under contrasting agricultural settings to further understand the relationship between functional diversity and biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. doi:10.18637/jss.v067.i01

    Article  Google Scholar 

  • Bengtsson J, Ahnstrom J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269. doi:10.1111/j.1365-2664.2005.01005.x

    Article  Google Scholar 

  • Bianchi F, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc Lond B 273:1715–1727. doi:10.1098/rspb.2006.3530

    Article  CAS  Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the World’s Crops: an identification and information guide, 2nd edn. Wiley, New York

    Google Scholar 

  • Carter N, Dixon AFG, Rabbinge R (1982) Cereal aphid populations: biology, simulation and prediction. Centre for Agricultural Publishing and Documentation, London

    Google Scholar 

  • Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932. doi:10.1111/j.1461-0248.2011.01642.x

    Article  PubMed  Google Scholar 

  • Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14:342–355. doi:10.1046/j.1523-1739.2000.98081.x

    Article  Google Scholar 

  • Espinoza S, Ovalle C, Zagal E et al (2012) Contribution of legumes to wheat productivity in Mediterranean environments of central Chile. Field Crop Res 133:150–159. doi:10.1016/j.fcr.2012.03.006

    Article  Google Scholar 

  • Ferrer-Suay M, Selfa J, Pujade-Villar J (2013) Review of the neotropical Charipinae (Hymenoptera, Cynipoidea, Figitidae). Rev Bras Entomol 57:279–299. doi:10.1590/S0085-56262013005000020

    Article  Google Scholar 

  • Figueroa CC, Simon JC, Le Gallic JF et al (2005) Genetic structure and clonal diversity of an introduced pest in Chile, the cereal aphid Sitobion avenae. Heredity (Edinb) 95:24–33. doi:10.1038/sj.hdy.6800662

    Article  CAS  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Gagic V, Tscharntke T, Dormann CF et al (2011) Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc R Soc Lond B 278:2946–2953. doi:10.1098/rspb.2010.2645

    Article  Google Scholar 

  • Gariepy TD, Kuhlmann U, Gillott C, Erlandson M (2007) Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of Arthropods. J Appl Entomol 131:225–240. doi:10.1111/j.1439-0418.2007.01145.x

    Article  CAS  Google Scholar 

  • Gariepy TD, Haye T, Zhang J (2014) A molecular diagnostic tool for the preliminary assessment of host-parasitoid associations in biological control programmes for a new invasive pest. Mol Ecol 23:3912–3924. doi:10.1111/mec.12515

    Article  CAS  PubMed  Google Scholar 

  • Gerding M, Zúñiga E, Quiroz CE et al (1989) Abundancia relativa de los parasitoides de Sitobion avenae (F) y Metopolophium dirhodum (WLK) (Homoptera: Aphididae) en diferentes áreas geográficas de Chile. Agric Técnica 42:105–114

    Google Scholar 

  • Gómez-Marco F, Urbaneja A, Jaques JA et al (2015) Untangling the aphid-parasitoid food web in citrus: can hyperparasitoids disrupt biological control? Biol Control 81:111–121. doi:10.1016/j.biocontrol.2014.11.015

    Article  Google Scholar 

  • Grez AA, Zaviezo T, Tischendorf L, Fahrig L (2004) A transient, positive effect of habitat fragmentation on insect population densities. Oecologia 141:444–451. doi:10.1007/s00442-004-1670-8

    Article  PubMed  Google Scholar 

  • Grez AA, Zaviezo T, Mancilla A (2011) Effect of prey density on intraguild interactions among foliar- and ground-foraging predators of aphids associated with alfalfa crops in Chile: a laboratory assessment. Entomol Exp Appl 139:1–7. doi:10.1111/j.1570-7458.2011.01101.x

    Article  Google Scholar 

  • Guerra M, Fuentes-Contreras E, Niemeyer HM (1998) Differences in behavioral responses of Sitobion avenae (Hemiptera: Aphididae) to volatile compounds, following parasitism by Aphidius ervi (Hymenoptera: Braconidae). Écoscience 5:334–337. doi:10.1080/11956860.1998.11682479

    Article  Google Scholar 

  • Holt RD, Lawton JH, Polis GA, Martinez ND (1999) Trophic rank and the species–area relationship. Ecology 80:1495–1504. doi:10.1890/0012-9658(1999)080[1495:TRATSA]2.0.CO;2

  • Jonsson M, Wratten SD, Robinson KA, Sam SA (2009) The impact of floral resources and omnivory on a four trophic level food web. Bull Entomol Res 99:275. doi:10.1017/S0007485308006275

    Article  CAS  PubMed  Google Scholar 

  • Jonsson M, Wratten SD, Landis DA et al (2010) Habitat manipulation to mitigate the impacts of invasive arthropod pests. Biol Invasions 12:2933–2945. doi:10.1007/s10530-010-9737-4

    Article  Google Scholar 

  • Jonsson M, Straub CS, Didham RK et al (2015) Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity. J Appl Ecol 52:1274–1282. doi:10.1111/1365-2664.12489

    Article  Google Scholar 

  • Juen A, Traugott M (2005) Detecting predation and scavenging by DNA gut-content analysis: a case study using a soil insect predator-prey system. Oecologia 142:344–352. doi:10.1007/s00442-004-1736-7

    Article  PubMed  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201. doi:10.1146/annurev.ento.45.1.175

    Article  CAS  PubMed  Google Scholar 

  • Langer V (2001) The potential of leys and short rotation coppice hedges as reservoirs for parasitoids of cereal aphids in organic agriculture. Agric Ecosyst Environ 87:81–92. doi:10.1016/S0167-8809(00)00298-X

    Article  Google Scholar 

  • Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR (2009) Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu Rev Ecol Evol Syst 40:573–592. doi:10.1146/annurev.ecolsys.110308.120320

    Article  Google Scholar 

  • Macfadyen S, Gibson R, Polaszek A et al (2009a) Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control? Ecol Lett 12:229–238. doi:10.1111/j.1461-0248.2008.01279.x

    Article  PubMed  Google Scholar 

  • Macfadyen S, Gibson R, Raso L et al (2009b) Parasitoid control of aphids in organic and conventional farming systems. Agric Ecosyst Environ 133:14–18. doi:10.1016/j.agee.2009.04.012

    Article  Google Scholar 

  • Martin EA, Reineking B, Seo B, Steffan-Dewenter I (2013) Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc Natl Acad Sci USA 110:5534–5539. doi:10.1073/pnas.1215725110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller CB, Adriaanse ICT, Belshaw R, Godfray HCJ (1999) The structure of an aphid-parasitoid community. J Anim Ecol 68:346–370. doi:10.1046/j.1365-2656.1999.00288.x

    Article  Google Scholar 

  • Nieto Nafría JM, Fuentes-Contreras E, Castro Colmenero M et al (2016) Catálogo de los áfidos (Hemiptera, Aphididae) de Chile, con plantas hospedadoras y distribuciones regional y provincial. Graellsia 72:50. doi:10.3989/graellsia.2016.v72.167

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) Vegan: community ecology package. https://CRAN.R-project.org/package=vegan.Rpackageversion2.4-0. Accessed Dec 2016

  • Östman Ö, Ekbom B, Bengtsson J (2001) Landscape heterogeneity and farming practice influence biological control. Basic Appl Ecol 2:365–371. doi:10.1078/1439-1791-00072

    Article  Google Scholar 

  • Plećaš M, Gagic V, Janković M et al (2014) Landscape composition and configuration influence cereal aphid–parasitoid–hyperparasitoid interactions and biological control differentially across years. Agric Ecosyst Environ 183:1–10. doi:10.1016/j.agee.2013.10.016

    Article  Google Scholar 

  • Pons X, Starý P (2003) Spring aphid-parasitoid (Hom., Aphididae, Hym., Braconidae) associations and interactions in a Mediterranean arable crop ecosystem, including Bt maize. J Pest Sci 76:133–138. doi:10.1007/s10340-003-0003-8

    Google Scholar 

  • QGIS Development Team (2009) QGIS geographic information system. Open Source Geospatial Foundation. http://qgis.osgeo.org. Accessed Dec 2016

  • Quicke DLJ (2015) The braconid and ichneumonid parasitoid wasps: biology, systematics, evolution and ecology, 1st edn. Wiley-Blackwell, Chichester

    Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Rand TA, van Veen FJF, Tscharntke T (2012) Landscape complexity differentially benefits generalized fourth, over specialized third, trophic level natural enemies. Ecography (Cop) 35:97–104. doi:10.1111/j.1600-0587.2011.07016.x

    Article  Google Scholar 

  • Raymond L, Ortiz-Martínez SA, Lavandero B (2015) Temporal variability of aphid biological control in contrasting landscape contexts. Biol Control 90:148–156. doi:10.1016/j.biocontrol.2015.06.011

    Article  Google Scholar 

  • Rojas S (2005) Control Biológico de Plagas en Chile. Historia y Avances. La Cruz: Ministerio de Agricultura, Instituto de Investigaciones Agropecuarias. INIA, Santiago

    Google Scholar 

  • Roschewitz I, Hücker M, Tscharntke T, Thies C (2005) The influence of landscape context and farming practices on parasitism of cereal aphids. Agric Ecosyst Environ 108:218–227. doi:10.1016/j.agee.2005.02.005

    Article  Google Scholar 

  • Rosenheim JA (1998) Higher-order predators and the regulation of insect herbivore populations. Annu Rev Entomol 43:421–447. doi:10.1146/annurev.ento.43.1.421

    Article  CAS  PubMed  Google Scholar 

  • Roubinet E, Straub CS, Jonsson T et al (2015) Additive effects of predator diversity on pest control caused by few interactions among predator species. Ecol Entomol 40:362–371. doi:10.1111/een.12188

    Article  Google Scholar 

  • Rusch A, Bommarco R, Jonsson M et al (2013) Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J Appl Ecol 50:345–354. doi:10.1111/1365-2664.12055

    Article  Google Scholar 

  • Santibañez F, Uribe JM (1993) Atlas Agroclimático de Chile regiones VI, VII, VIII y IX. MINAGRI, FIA, CORFO, Santiago

    Google Scholar 

  • Schellhorn NA, Andow DA (2005) Response of coccinellids to their aphid prey at different spatial scales. Popul Ecol 47:71–76. doi:10.1007/s10144-004-0204-x

    Article  Google Scholar 

  • Schmidt MH, Lauer A, Purtauf T et al (2003) Relative importance of predators and parasitoids for cereal aphid control. Proc R Soc Lond B 270:1905–1909. doi:10.1098/rspb.2003.2469

    Article  Google Scholar 

  • Snyder WE, Ives AR (2003) Interactions between specialist and generalist natural enemies: parasitoids, predators, and pea aphid biocontrol. Ecology 84:91–107. doi:10.1890/0012-9658(2003)084[0091:IBSAGN]2.0.CO;2

    Article  Google Scholar 

  • Starý P (1995) The Aphidiidae of Chile (Hymenoptera, Ichneumonoidea, Aphidiidae). Dtsch Entomol Zeitschrift 42:113–138

    Article  Google Scholar 

  • Starý P, Rodriguez AF, Gerding M et al (1994) Distribution, frequency, host range and parasitism of two new cereal aphids, Sitobion fragariae (Walker) and Metopolophium festucae cerealium Stroyan (Homoptera, Aphididae), in Chile. Agric Técnica 54:54–59

    Google Scholar 

  • Starý P, Rakhshani E, Žikić V et al (2014) Altitudinal zonation of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) in the neotropical region. Entomol News 124:86–97. doi:10.3157/021.124.0203

    Article  Google Scholar 

  • Staudacher K, Jonsson M, Traugott M (2016) Diagnostic PCR assays to unravel food web interactions in cereal crops with focus on biological control of aphids. J Pest Sci 89:281–293. doi:10.1007/s10340-015-0685-8

    Article  Google Scholar 

  • Straub CS, Finke DL, Snyder WE (2008) Are the conservation of natural enemy biodiversity and biological control compatible goals? Biol Control 45:225–237. doi:10.1016/j.biocontrol.2007.05.013

    Article  Google Scholar 

  • Sunnucks P, Hales D (1996) Numerous Transposed Sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol 13:510–524

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Sone H, Vargas Mesina RR (1980) Estudio de espectro y grado de establecimiento de parasitoides de los áfidos del trigo (Hymenoptera: Aphidiidae). Agric Técnica 40:66–73

    Google Scholar 

  • Thies C, Roschewitz I, Tscharntke T (2005) The landscape context of cereal aphid-parasitoid interactions. Proc R Soc Lond B 272:203–210. doi:10.1098/rspb.2004.2902

    Article  Google Scholar 

  • Traugott M, Symondson WOC (2008) Molecular analysis of predation on parasitized hosts. Bull Entomol Res 98:223–231. doi:10.1017/S0007485308005968

    CAS  PubMed  Google Scholar 

  • Traugott M, Bell JR, Broad GR et al (2008) Endoparasitism in cereal aphids: molecular analysis of a whole parasitoid community. Mol Ecol 17:3928–3938. doi:10.1111/j.1365-294X.2008.03878.x

    Article  CAS  PubMed  Google Scholar 

  • Traugott M, Kamenova S, Ruess L et al (2013) Empirically characterising trophic networks: what emerging DNA-based methods, stable isotope and fatty acid analyses can offer. In: Woodward G, Bohan DA (eds) Advances in ecological research. Elsevier, Amsterdam, pp 177–224

    Google Scholar 

  • Tscharntke T, Klein AM, Kruess A et al (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. doi:10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  • Tscharntke T, Bommarco R, Clough Y et al (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309. doi:10.1016/j.biocontrol.2007.08.006

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA et al (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev Camb Philos Soc 87:661–685. doi:10.1111/j.1469-185X.2011.00216.x

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Romo CM (2010) Natural enemy diversity and biological control: making sense of the context-dependency. Basic Appl Ecol 11:657–668. doi:10.1016/j.baae.2010.08.005

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Wratten SD (2004) Improved fitness of aphid parasitoids receiving resource subsidies. Ecology 85:658–666. doi:10.1890/03-0222

    Article  Google Scholar 

  • Vollhardt IMG, Tscharntke T, Wäckers FL et al (2008) Diversity of cereal aphid parasitoids in simple and complex landscapes. Agric Ecosyst Environ 126:289–292. doi:10.1016/j.agee.2008.01.024

    Article  Google Scholar 

  • Woltz JM, Isaacs R, Landis DA (2012) Landscape structure and habitat management differentially influence insect natural enemies in an agricultural landscape. Agric Ecosyst Environ 152:40–49. doi:10.1016/j.agee.2012.02.008

    Article  Google Scholar 

  • Zepeda-Paulo FA, Ortiz-Martínez SA, Figueroa CC, Lavandero B (2013) Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents. Evol Appl 6:983–999. doi:10.1111/eva.12081

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Cinthya Villegas, Nuri Cabrera, Vixania Faundez and Pablo Martinez for their help in field collection samples and laboratory procedures. To Lucie Raymond, Manuel Plantegenest, Joan van Baaren, Michael Traugott and Zhengpei Ye for their valuable comments and providing samples. We thank the anonymous referees for providing helpful comments and suggestions on the manuscript. This study was funded by Fondecyt Grant 1140632 and 1110341 of BL and CONICYT and Universidad de Talca doctoral Grant of SO. The authors also would like to thank to the Marie Curie grant “APHIDWEB: Structure, strength and invasibility of aphid food webs”.

Funding

This study was funded by Fondecyt grant 1140632 of BL and CONICYT and Universidad de Talca doctoral grant of SO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastián A. Ortiz-Martínez or Blas Lavandero.

Ethics declarations

Conflict of interest

SO and BL declare that they have no conflict of interest. All authors contributed equally.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by M. Traugott.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Martínez, S.A., Lavandero, B. The effect of landscape context on the biological control of Sitobion avenae: temporal partitioning response of natural enemy guilds. J Pest Sci 91, 41–53 (2018). https://doi.org/10.1007/s10340-017-0855-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-017-0855-y

Keywords

Navigation