Skip to main content
Log in

The living strategy of nematophagous fungi

  • Review
  • Published:
Mycoscience

Abstract

The infection structures, trophism, and ecological character of nematophagous fungi are reviewed in this article on the basis of data extracted from the literature and the most recent experiments conducted in this area. Traditionally, nematophagous fungi are classified into four groups according to their modes of attacking nematodes: nematode-trapping fungi using adhesive or mechanical hyphal traps, endoparasitic fungi using their spores, eggparasitic fungi invading nematode eggs or females with their hyphal tips, and toxin-producing fungi immobilizing nematodes before invasion. In the present review, we focus on the first two groups. The living strategies of these nematophagous fungi depend on the diversity of their infection structures, such as different traps and spore types, which determine the modes of infecting nematodes. The diversity of trophic modes of nematophagous fungi is an important prerequisite for fungal survival and activity in soil. The abundance and activity of Hirsutella rhossiliensis and H. minnesotensis, representatives of endoparasites and potential biocontrol agents against nematodes, are highly dependent on environmental factors. Comprehensive understanding of the survival and activity of nematophagous fungi in soil is fundamental for the exploitation of these fungi as successful biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barron GL (1977) The nematode-destroying fungi. Topics in mycobiology, no. 1. Canadian Biological Publications, Guelph, pp 1–140

    Google Scholar 

  • Barron GL (1987) The gun cell of Haptoglossa mirabilis. Mycologia 79:877–883

    Article  Google Scholar 

  • Beakes GW, Glockling SL (1998) Injection tube differentiation in gun cells of a Haptoglossa species which infects nematodes. Fungal Genet Biol 24:45–68

    Article  PubMed  Google Scholar 

  • Chen SY, Dickson DW (2004) Biological control of nematodes by fungal antagonists. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology: advances and perspectives, vol II. Nematode management and utilization. Tsinghua University Press and CABI Publishing, Cambridge, MA, pp 343–403, 979–1039

    Google Scholar 

  • Chen SY, Liu XZ, Chen FJ (2000) Hirsutella minnesotensis sp. nov. A new parasite of the soybean cyst nematode. Mycologia 92:819–824

    Article  Google Scholar 

  • Chet I (1987) Trichoderma: application, mode of action, and potential as a biocontrol agent of soilborne plant pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  • Cooke RC (1963) Ecological characteristics of nematode-trapping hyphomycetes. I. Preliminary studies. Ann Appl Biol 52:431–437

    Article  Google Scholar 

  • Dackman C, Nordbring-Hertz B (1992) Conidial traps: a new survival structure of the nematode-trapping fungus Arthrobotrys oligospora. Mycol Res 96:194–198

    Google Scholar 

  • Dackman C, Jansson HB, Nordbring-Hertz B (1992) Nematophagous fungi and their activities in soil. In: Stotzky G, Bollag JM (eds) Soil biochemistry. Dekker, New York, pp 95–103

    Google Scholar 

  • Glockling SL, Beakes GW (2002) Ultrastructural morphogenesis of dimorphic arcuate infection (gun) cells of Haptoglossa erumpens, an obligate parasite of Bunonema nematodes. Fungal Genet Biol 37:250–262

    Article  PubMed  Google Scholar 

  • Gray NF (1987) Nematophagous fungi with particular reference to their ecology. Biol Rev 62:245–304

    Article  Google Scholar 

  • Hakariya M, Masuyama N, Saikawa M (2002) Shooting of sporidium by “gun” cells in Haptoglossa heterospora and H. zoospora and secondary zoospore formation in H. zoospora. Mycoscience 43:119–125

    Article  Google Scholar 

  • Jaffee BA (1992) Population biology and biological control of nematodes. Can J Microbiol 38:359–364

    Article  PubMed  CAS  Google Scholar 

  • Jaffee BA, McInnis TM (1991) Sampling strategies for detection of density-dependent parasitism of soil-borne nematodes by nematophagous fungi. Rev Nematol 14:147–150

    Google Scholar 

  • Jaffee BA, Zehr EI (1985) Parasitic and saprophytic abilities of the nematode-attacking fungus Hirsutella rhossiliensis. J Nematol 17:341–345

    CAS  PubMed  Google Scholar 

  • Jaffee BA, Muldoon AE, Phillips R, Mangel M (1990) Rates of spore transmission, mortality, and production for the nematophagous fungus Hirsutella rhossiliensis. Phytopathology 80:1083–1088

    Article  Google Scholar 

  • Jaffee BA, Muldoon AE, Anderson CE, Westerdahl BB (1991) Detection of the nematophagous fungus Hirsutella rhossiliensis in California sugarbeet fields. Biol Control 1:63–67

    Article  Google Scholar 

  • Jaffee BA, Phillips R, Muldoon A, Mangel M (1992) Densitydependent host-pathogen dynamics in soil microcosms. Ecology 73:495–506

    Article  Google Scholar 

  • Jansson HB (1982) Predacity by nematophagous fungi and its relation to the attraction of nematodes. Microb Ecol 8:233–240

    Article  Google Scholar 

  • Jansson HB, Lopez-Llorca LV (2004) Control of nematodes by fungi. In: Arora DK (ed) Fungal biotechnology in agricultural, food, and environmental applications. Dekker, New York, pp 205–215

    Google Scholar 

  • Jansson HB, Nordbring-Hertz B (1981) Trap and conidiophore formation in Arthrobotrys superba. Trans Br Mycol Soc 77:205–207

    Google Scholar 

  • Jansson HB, Tunlid A, Nordbring-Hertz B (1997) Biological control: nematode. In: Anke T (ed) Fungal biotechnology. Chapman & Hall, Weinheim, pp 38–50

    Google Scholar 

  • Kerry BA, Jaffee BA (1997) Fungi as biocontrol agents for plant parasitic nematodes. In: Wicklow DT, Söderström B (eds) The Mycota, vol IV. Springer-Verlag, Berlin, pp 203–218

    Google Scholar 

  • Li TF, Zhang KQ, Liu XZ (2000) Taxonomy of nematophagous fungi. Chinese Science and Technical Publishing, Beijing

    Google Scholar 

  • Li SD, Miao ZQ, Zhang YH, Liu XZ (2003) Monacrosporium janus, a new nematode-trapping hyphomycete parasitizing sclerotia of Sclerotinia sclerotiorum. Mycol Res 107:888–894

    Article  PubMed  Google Scholar 

  • Liu XZ, Chen SY (2002) Nutritional requirements of nematophagous fungus Hirsutella rhossiliensis. Biocontrol Sci Technol 12:381–393

    Article  Google Scholar 

  • Luo H, Li X, Li GH, Pan YB, Zhang KQ (2006) Acanthocytes of Stropharia rugosoannulata function as a nematode-attacking device. Appl Environ Microbiol 72:2982–2987

    Article  PubMed  CAS  Google Scholar 

  • McInnes TW, Jaffee BA (1989) An assay for Hirsutella rhossiliensis spores and the importance of phialides for nematode inoculation. J Nematol 21:229–234

    Google Scholar 

  • Nordbring-Hertz B (2004) Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora: an extensive plasticity of infection structures. Mycologist 18:125–133

    Article  Google Scholar 

  • Nordbring-Hertz B, Friman E, Veenhuis M (1989) Hyphal fusion during initial stages of trap formation in Arthrobotrys oligospora. Antonie Leeuwenhoek 55:237–244

    Article  PubMed  CAS  Google Scholar 

  • Olsson S, Persson Y (1994) Transfer of phosphorus from Rhizoctonia solani to the mycoparasite Arthrobotrys oligospora. Mycol Res 98:1065–1068

    Google Scholar 

  • Persmark L, Nordbring-Hertz B (1997) Conidial trap formation of nematode-trapping fungi in soil and soil extracts. FEMS Microbiol Ecol 22:313–323

    Article  CAS  Google Scholar 

  • Persson Y, Veenhuis M, Nordbring-Hertz B (1985) Morphogenesis and significance of hyphal coiling by nematode-trapping fungi in mycoparasitic relationships. FEMS Microbiol Ecol 31:283–291

    Article  Google Scholar 

  • Rubner A (1996) Revision of predacious hyphomycetes in the Dactylella-Monacrosporium complex. Stud Mycol 39:1–134

    Google Scholar 

  • Tedford EC, Jaffee BA, Muldoon AE (1992) Effects of soil moisture and texture on transmission of the nematophagous fungus Hirsutella rhossiliensis to cyst and root-knot nematodes. Phytopathology 82: 1002–1007

    Article  Google Scholar 

  • Timper P, Kaya HK, Jaffee BA (1991) Survival of entomogenous nematodes in soil infested with the nematode-parasitic fungus Hirsutella rhossiliensis (Deuteromycotina: Hyphomycetes). Biol Control 1:42–50

    Article  Google Scholar 

  • Tzean SS, Estey RH (1978) Nematode-trapping fungi as mycopathogens. Phytopathology 68:1266–1270

    Article  Google Scholar 

  • Veenhuis M, Nordbring-Hertz B, Harder W (1985) Development and fate of electron dense microbodies in trap cells of the nematophagous fungus Arthrobotrys oligospora. Antonie Leeuwenhoek 51:399–407

    Article  PubMed  CAS  Google Scholar 

  • Xiang MC (2006) Taxonomy of Hirsutella minnesotensis and allied species and its molecular ecology. PhD thesis, Hunan Agricultural University, Changsha

    Google Scholar 

  • Yang Y, Yang EC, An ZQ, Liu XZ (2007) Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multi-protein sequences. Proc Natl Acad Sci U S A 104:8379–8384

    Article  PubMed  CAS  Google Scholar 

  • Zhang LM (2005) Ecological studies of nematophagous fungus Hirsutella rhossiliensis in soil. PhD thesis, Institute of Microbiology, Chinese Academy of Sciences, Beijing 26–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhong Liu.

About this article

Cite this article

Liu, X., Xiang, M. & Che, Y. The living strategy of nematophagous fungi. Mycoscience 50, 20–25 (2009). https://doi.org/10.1007/s10267-008-0451-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10267-008-0451-3

Key words

Navigation