Skip to main content
Log in

Coelomycete systematics with special reference to Colletotrichum

  • Review
  • Published:
Mycoscience

Abstract

Morphological and molecular data of coelomycetes are analyzed. Taxonomic tools and species concepts are explored. The bimodal systematics approach is emphasized. A comprehensive case study on Colletotrichum is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abang MM, Winter S, Green KR, Hoffmann P, Mignouna HD, Wolf GA (2002) Molecular identification of Colletotrichum gloeosporioides causing yam anthracnose in Nigeria. Plant Pathol 51:63–71

    Article  Google Scholar 

  • Abang MM, Winter S, Mignouna HD, Green KR, Asiedu R (2003) Molecular taxonomic, epidemiological and population genetic approaches to understanding yam anthracnose disease. Afr J Biotechnol 2:486–496

    CAS  Google Scholar 

  • Adaskaveg JE, Hartin RJ (1997) Characterization of Colletotrichum acutatum isolates causing anthracnose of almond and peach in California. Phytopathology 87:979–987

    Article  PubMed  CAS  Google Scholar 

  • Afanador-Kafuri L, Minz D, Maymon M, Freeman S (2003) Characterization of Colletotrichum isolates from tamarillo, passiflora, and mango in Colombia and identification of a unique species from the genus. Phytopathology 93:579–587

    Article  PubMed  CAS  Google Scholar 

  • Alahakoon PW, Brown AE, Sreenivasaprasad S (1994) Cross-infection potential of genetic groups of Colletotrichum gloeosporioides on tropical fruits. Physiol Mol Plant Pathol 44:93–103

    Article  CAS  Google Scholar 

  • Bailey JA, Jeger MJ (1992) Colletotrichum: biology, pathology and control. CABI, Wallingford

    Google Scholar 

  • Bernstein B, Zehr EI, Dean RA, Shabi E (1995) Characteristics of Colletotrichum from peach, apple, pecan, and other hosts. Plant Dis 79:478–482

    Google Scholar 

  • Blakemore EJA, Jaccoud Filho DS, Reeves JC (1994) PCR for the detection of Pyrenophora species, Fusarium moniliforme, Stenocarpella maydis, and Phomopsis/Diaporthe complex. In: Schots A, Dewey FM, Oliver RP (eds) Modern assays for plant pathogenic fungi. CABI, Wallingford, pp 205–213

    Google Scholar 

  • Bonde MR, Peterson GL, Maas JL (1991) Isozyme comparisons for identification of Colletotrichum species pathogenic to strawberry. Phytopathology 81:1523–1528

    Article  CAS  Google Scholar 

  • Braithwaite KS, Irwin JAG, Manners JM (1990) Ribosomal DNA as a molecular taxonomic marker for the group species Colletotrichum gloeosporioides. Aust Syst Bot 3:733–738

    Article  Google Scholar 

  • Brown AE, Soepena H (1994) Pathogenicity of Colletotrichum acutatum and Colletotrichum gloeosporioides on leaves of Hevea spp. Mycol Res 98:264–266

    Google Scholar 

  • Brown AE, Sreenivasaprasad S, Timmer LW (1996) Molecular characterization of slow-growing orange and key lime anthracnose strains of Colletotrichum from citrus as C. acutatum. Phytopathology 86:523–527

    Article  CAS  Google Scholar 

  • Buddie AG, Martínez-Culebras P, Bridge PD, García MD, Querol A, Cannon PF, Monte E (1999) Molecular characterization of Colletotrichum strains derived from strawberry. Mycol Res 103:385–394

    Article  CAS  Google Scholar 

  • Camacho FJ, Gernandt DS, Liston A, Stone JK, Klein AS (1997) Endophytic fungal DNA, the source of contamination in spruce needle DNA. Mol Ecol 6:983–987

    Article  CAS  Google Scholar 

  • Cannon PF, Bridge PD, Monte E (2000) Linking the past, present, and future of Colletotrichum systematics. In: Prusky D, Freeman S, Dickman MB (eds) Colletotrichum host specificity, pathology, and host-pathogen interaction. American Phytopathological Society, St. Paul, MN, pp 1–20

    Google Scholar 

  • Cano J, Guarro J, Gené J (2004) Molecular and morphological identification of Colletotrichum species of clinical interest. J Clin Microbiol 42:2450–2454

    Article  PubMed  Google Scholar 

  • Chakraborty S, Perrot R, Ellis N, Thomas MR (1999) New aggressive Colletotrichum gloeosporioides strains on Stylosanthes scabra detected by virulence and DNA analysis. Plant Dis 83:333–340

    Article  Google Scholar 

  • Dron M, Bailey JA (1999) Improved control of bean anthracnose disease in Latin America and Africa through increased understanding of pathogen diversity. Project TS3-CT93-214. (http://www.agricta.org/pubs/std/vol2/pdf/214.pdf)

  • Du M, Schardl CL, Nuckles EM, Vaillancourt LJ (2005) Using mating-type gene sequences for improved phylogenetic resolution of Collectotrichum species complexes. Mycologia 97:641–658

    Article  PubMed  CAS  Google Scholar 

  • Fernandez FA, Hanlin RT (1996) Morphological and RAPD analysis of Diaporthe phaseolorum from soybean. Mycologia 88:425–440

    Article  CAS  Google Scholar 

  • Förster H, Adaskaveg JE (1999) Identification of subpopulations of Colletotrichum acutatum and epidemiology of almond anthracnose in California. Phytopathology 89:1056–1065

    Article  PubMed  Google Scholar 

  • Freeman S, Katan T (1997) Identification of Colletotrichum species responsible for anthracnose and root necrosis of strawberry in Israel. Phytopathology 87:516–521

    Article  PubMed  CAS  Google Scholar 

  • Freeman S, Pham M, Rodríguez RJ (1993) Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A+T-rich DNA, and nuclear DNA analyses. Exp Mycol 17:309–322

    Article  CAS  Google Scholar 

  • Freeman S, Shabi E, Katan T (2000) Characterization of Colletotrichum acutatum causing anthracnose of anemone (Anemone coronaria L.). Appl Environ Microbiol 66:5267–5272

    Article  PubMed  CAS  Google Scholar 

  • Freeman S, Minz D, Maymon M, Zveibil A (2001) Genetic diversity within Colletotrichum acutatum sensu Simmonds. Phytopathology 91:586–592

    Article  PubMed  CAS  Google Scholar 

  • Guerber JC, Liu B, Correll JC, Johnston PR (2003) Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia 95:872–895

    Article  CAS  Google Scholar 

  • Guthrie PAI, Magill CW, Frederiksen RA, Odvody GN (1992) Random amplified ploymorphic DNA markers: a system for identifying and differentiating isolates of Colletotrichum graminicola. Phytopathology 82:832–835

    Article  Google Scholar 

  • Hayden HL, Pegg KG, Aitken EAB, Irwin JAG (1994) Genetic relationships as assessed by molecular markers and cross-infection among strains of Colletotrichum gloeosporioides. Aust J Bot 42:9–18

    Article  CAS  Google Scholar 

  • Hodson A, Mills PR, Brown AE (1993) Ribosomal and mitochondrial DNA polymorphisms in Colletotrichum gloeosporioides isolated from tropical fruits. Mycol Res 97:329–335

    CAS  Google Scholar 

  • Jayasinghe CK, Fernando THPS, Priyanka UMS (1997) Colletotrichum acutatum is the main cause of Colletotrichum leaf disease of rubber in Sri Lanka. Mycopathologia 137:53–56

    Article  PubMed  CAS  Google Scholar 

  • Jeewon R, Liew EC, Hyde KD (2002) Phylogenetic relationships of Pestalotiopsis and allied genera inferred from ribosomal DNA sequences and morphological characters. Mol Phylogenet Evol 25:378–392

    Article  PubMed  CAS  Google Scholar 

  • Jeewon R, Liew EC, Simpson JA, Hodgkiss IJ, Hyde KD (2003) Phylogenetic significance of morphological characters in the taxonomy of Pestalotiopsis species. Mol Phylogenet Evol 27:372–383

    Article  PubMed  CAS  Google Scholar 

  • Johnston PR, Jones D (1997) Relationships among Colletotrichum isolates from fruit-rots assessed using rDNA sequences. Mycologia 89:420–430

    Article  CAS  Google Scholar 

  • Katan T (2000) Vegetative compatibility in Colletotrichum. In: Prusky D, Freeman S, Dickman MB (eds) Colletotrichum host specificity, pathology, and host-pathogen interaction. American Phytopathological Society, St. Paul, MN, pp 145–179

    Google Scholar 

  • Kaufman PJ, Weideman GJ (1996) Isozyme analysis of Colletotrichum gloeosporioides from five host genera. Plant Dis 80:1289–1293

    Google Scholar 

  • Keith LM, Velasquez M, Zee FT (2006) Identification and characterization of Pestalotiopsis spp. causing scab disease of guava, Psidium guajava L. in Hawaii. Plant Dis 90:16–23

    Article  CAS  Google Scholar 

  • Kulik T, Pszczółlkowska A, Olszewski J, Fordoński G, Płodzień K, Sawicka-Sienkiewicz E (2005) Identification of Colletotrichum acutatum from yellow and andean lupin seeds using PCR assay. Electron J Pol Agron U 8(1):02 Agronomy (http://www.ejpau.media.pl/volume8/issue1/art-02.html)

    Google Scholar 

  • Kuramae-Izioka EE, Lopes CR, Souza NL, Machado MA (1997) Morphological and molecular characterization of Colletotrichum spp. from citrus orchards affected by postbloom fruit drop in Brazil. Eur J Plant Pathol 103:323–329

    Article  CAS  Google Scholar 

  • Lardner R, Johnston PR, Plummer KM, Pearson MN (1999) Morphological and molecular analysis of Colletotrichum acutatum sensu lato. Mycol Res 103:275–285

    Article  Google Scholar 

  • Liyanage HD, McMillan RT, Kistler HC (1992) Two genetically distinct populations of Colletotrichum gloeosporioides from citrus. Phytopathology 82:1371–1376

    Article  CAS  Google Scholar 

  • Lotter HC, Berger DK (2005) Anthracnose of lupins in South Africa is caused by Colletotrichum lupini var. setosum. Australas Plant Pathol 34:385–392

    Article  Google Scholar 

  • Lubbe CM, Denman S, Cannon PF, Groenewald JZ (Ewald), Lamprecht SC, Crous PW (2004) Characterization of Colletotrichum species associated with diseases of Proteaceae. Mycologia 96:1268–1279

    Article  Google Scholar 

  • Mackie JM, Irwin JAG (1998) Genetics and race variability of the lucerne-Colletotrichum trifolii pathosystem in Australia. Aust J Agric Res 49:713–722

    Article  Google Scholar 

  • Majer D, Mithen R, Lewis BG, Vos P, Oliver RP (1996) The use of AFLP fingerprinting for the detection of genetic variation in fungi. Mycol Res 100:1107–1111

    CAS  Google Scholar 

  • Martín MP, García-Figueres F (1999) Colletotrichum acutatum and C. gloeosporioides cause anthracnose on olives. Eur J Plant Pathol 105:733–741

    Article  Google Scholar 

  • Martínez-Culebras PV, Barrio E, García MD, Querol A (2000) Identification of Colletotrichum species responsible for anthracnose of strawberry based on the internal transcribed spacers of the ribosomal region. FEMS Microbiol Lett 189:97–101

    Article  PubMed  Google Scholar 

  • Meijer G, Megnegneau B, Linders EGA (1994) Variability for isozyme, vegetative compatibility and RAPD markers in natural populations of Phomopsis subordinaria. Mycol Res 98:267–276

    CAS  Google Scholar 

  • Mills PR, Sreenivasaprasad S, Brown AE (1992) Detection and differentiation of Colletotrichum gloeosporioides isolates using PCR. FEMS Microbiol Lett 98:137–144

    Article  CAS  Google Scholar 

  • Moriwaki J, Tsukiboshi T, Sato T (2002) Grouping of Colletotrichum species in Japan based on rDNA sequences. J Gen Plant Pathol 68:307–320

    Article  CAS  Google Scholar 

  • Munaut F, Hamaide N, Maraite H (2002) Genomic and pathogenic diversity in Colletotrichum gloeosporioides from wild native Mexican Stylosanthes spp., and taxonomic implications. Mycol Res 106:579–593

    Article  CAS  Google Scholar 

  • Nirenberg HI, Feiler U, Hagedorn G (2002) Description of Colletotrichum lupini comb. nov. in modern terms. Mycologia 94:307–320

    Article  Google Scholar 

  • Nitzan N, Hazanovsky M, Tal M, Tsror L (2002) Vegetative compatibility groups in Colletotrichum coccodes, the causal agent of black dot on potato. Phytopathology 92:827–832

    Article  PubMed  CAS  Google Scholar 

  • O’Neill NR, van Berkum P, Lin J-J, Kuo J, Ude GN, Kenworthy W, Saunders JA (1997) Application of amplified restriction fragment length polymorphism for genetic characterization of Colletotrichum pathogens of alfalfa. Phytopathology 87:745–750

    Article  PubMed  CAS  Google Scholar 

  • Pastor-Corrales MA, Otoya MM, Molina A, Singh SP (1995) Resistance to Colletotrichum lindemuthianum isolates from Middle America and Andean South America in different common bean races. Plant Dis 79:63–67

    Google Scholar 

  • Peres NAR, Kuramae EE, Dias MSC, de Souza NL (2002) Identification and characterization of Colletotrichum spp. affecting fruit after harvest in Brazil. J Phytopathol 150:128–134

    Article  CAS  Google Scholar 

  • Photita W, Taylor PWJ, Ford R, Hyde KD, Lumyong S (2005) Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Divers 18:117–133

    Google Scholar 

  • Rehner SA, Uecker FA (1994) Nuclear ribosomal internal transcribed spacer phylogeny and host diversity in the coelomycetes Phomopsis. Can J Bot 72:1666–1674

    Article  CAS  Google Scholar 

  • Riccioni L, Conca G, Pucci N (2003) Identification by PCR-RFLP of Phomopsis/Diaporthe species on Italian soybean seeds. In: 8th International Congress of Plant Pathology (ICPP 2003), Christchurch, New Zealand, February 2–7, abstract no. 1076 (http://www.ispave.it/ICCP%202003%20Identification%20by%20PCR_FLP%20of%20Phomopsis%20Diaporthe%20species%20on%20Italian%20soybean%20seeds.pdf)

  • Saha T, Kumar A, Ravindran M, Jacob CK, Roy B, Nazeer MA (2002) Identification of Colletotrichum acutatum from rubber using random amplified polymorphic DNAs and ribosomal DNA polymorphisms. Mycol Res 106:215–221

    Article  CAS  Google Scholar 

  • Sherriff C, Whelan MJ, Arnold GM, Lafay JF, Brygoo Y, Bailey JA (1994) Ribosomal DNA sequence analysis reveals new species groupings in the genus Colletotrichum. Exp Mycol 18:121–138

    Article  CAS  Google Scholar 

  • Sherriff C, Whelan MJ, Arnold GM, Bailey JA (1995) rDNA sequence analysis confirms the distinction between Colletotrichum graminicola and C. sublineolum. Mycol Res 99:475–478

    CAS  Google Scholar 

  • Smith BJ, Black LL (1990) Morphological, cultural, and pathogenic variation among Colletotrichum species isolated from strawberry. Plant Dis 74:69–76

    Article  Google Scholar 

  • Smith BJ, Magee JB, Gupton CL (1996) Susceptibility of rabbiteye blueberry cultivars to postharvest diseases. Plant Dis 80:215–218

    Google Scholar 

  • Sousa MF, Tavares RM, Gerós H, Lino-Neto T (2004) First report of Hakea sericea leaf infection caused by Pestalotiopsis funerea in Portugal. New Disease Reports 9: February 2004–July 2004 (http://www.bspp.org.uk/ndr/july2004/2004-23.asp)

  • Sreenivasaprasad S, Talhinhas P (2005) Genotypic and phenotypic diversity in Colletotrichum acutatum, a cosmopolitan pathogen causing anthracnose on a wide range of hosts. Mol Plant Pathol 6:361–378

    Article  CAS  Google Scholar 

  • Sreenivasaprasad S, Mills PR, Brown AE (1994) Nucleotide sequence of the rDNA spacer 1 enables identification of isolates of Colletotrichum as C. acutatum. Mycol Res 98:186–188

    Article  CAS  Google Scholar 

  • Sreenivasaprasad S, Mills PR, Meehan BM, Brown AE (1996) Phylogeny and systematics of 18 Colletotrichum species based on ribosomal DNA spacer sequences. Genome 39:499–512

    Article  PubMed  CAS  Google Scholar 

  • Sutton BC (1980) The Coelomycetes. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Sutton BC (1992) The genus Glomerella and its Colletotrichum anamorph. In: Bailey JA, Jeger MJ (eds) Colletotrichum: biology, pathology and control. CABI, Wallingford, pp 1–28

    Google Scholar 

  • Talhinhas P, Sreenivasaprasad S, Neves-Martins J, Oliveira H (2002) Genetic and morphological characterization of Colletotrichum acutatum causing anthracnose of lupins. Phytopatholgy 92:986–996

    Article  Google Scholar 

  • Talhinhas P, Sreenivasaprasad S, Neves-Martins J, Oliveira H (2005) Molecular and phenotypic analyses reveal association of diverse Colletotrichum acutatum groups and a low level of C. gloeosporioides with olive anthracnose. Appl Environ Microbiol 71:2987–2998

    Article  PubMed  CAS  Google Scholar 

  • Taylor JW (1995) Making the Deuteromycota redundant: a practical integration of mitosporic and meiosporic fungi. Can J Bot 73(suppl): s754–s759

    Article  Google Scholar 

  • Taylor JW, Jacobson DJ, Fisher MC (1999) The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol 37:197–246

    Article  PubMed  CAS  Google Scholar 

  • Thaung MM (1970) Epiphytotic of red rot of sugarcane in Burma. Plant Dis Rep 54:427

    Google Scholar 

  • Trigiano RN, Caetano-Anolles G, Bassam B, Windham MT (1995) DNA amplification fingerprinting provides evidence that Discula destructiva, the cause of dogwood anthracnose in North America, is an introduced pathogen. Mycologia 87:490–500

    Article  CAS  Google Scholar 

  • Uddin W, Stevenson KL, Pardo-Schultheiss RA, Rehner SA (1998) Pathogenic and molecular characterization of three Phomopsis isolates from peach, plum and Asian pear. Plant Dis 82:732–737

    Article  CAS  Google Scholar 

  • Vaillancourt LJ, Hanau RM (1992) Genetic and morphological comparisons of Glomerella (Colletotrichum) isolates from maize and from sorghum. Exp Mycol 16:219–229

    Article  Google Scholar 

  • Vinnere O (2004) Approaches to species delineation in anamorphic (mitosporic) fungi: a study on two extreme cases. Acta Universitatis Upasaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science & Technology, vol 917. Uppsala University, Uppsala

    Google Scholar 

  • von Arx JA (1957) Die Arten der Gattung Colletotrichum Corda. Phytopathol Z 29:413–468

    Google Scholar 

  • von Arx JA, Müller E (1954) Die Gattungen der amerosporen Pyrenomyceten. Beitr Kryptogamenfl Schweiz 11:1–434

    Google Scholar 

  • van Niekerk JM, Groenewald JZ, Farr DF, Fourie PH, Halleen F, Crous PW (2005) Reassessment of Phomospsis species on grapevines. Australas Plant Pathol 34:27–39

    Article  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  PubMed  CAS  Google Scholar 

  • Wharton PS, Diéguez-Uribeondo J (2004) The biology of Colletotrichum acutatum. An Jardín Bot Madrid 61:3–22

    Google Scholar 

  • Williams JGK, Kubelick AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Yang HA, Sweetingham MW (1998) The taxonomy of Colletotrichum isolates associated with lupin anthracnose. Aust J Agric Res 49:1213–1223

    Article  Google Scholar 

  • Zhang AW, Hartman GL, Riccioni L, Chen WD, Ma RZ, Pedersen WL (1997a) Using PCR to distinguish Diaporthe phaseolorum and Phomopsis longicolla from other soybean fungal pathogens and to detect them in soybean tissues Plant Dis 81:1143–1149

    Article  CAS  Google Scholar 

  • Zhang AW, Wendel JF, Clark LG (1997b) Bamboozled again! Inadvertent isolation of fungal rDNA sequences from bamboos (Poaceae: Bambusoideae). Mol Phylogenet Evol 8:205–217

    Article  PubMed  CAS  Google Scholar 

  • Zhang AW, Riccioni L, Pedersen WL, Kollipara KP, Hartman GL (1998) Molecular identification and phylogenetic grouping of Diaporthe phaseolorum and Phomopsis longicolla isolates from soybean. Phytopathology 88:1306–1314

    Article  PubMed  CAS  Google Scholar 

  • Zhang AW, Hartman GL, Curio-Penny B, Pedersen WL, Becker KB (1999) Molecular detection of Diaporthe phaseolorum and Phomopsis longicolla from soybean seeds. Phytopathology 89:796–804

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maung Mya Thaung.

About this article

Cite this article

Thaung, M.M. Coelomycete systematics with special reference to Colletotrichum . Mycoscience 49, 345–350 (2008). https://doi.org/10.1007/s10267-008-0432-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10267-008-0432-6

Key words

Navigation