Skip to main content
Log in

A techno-economic assessment of an algal-based biorefinery

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Economic and technological assessments have identified difficulties with the commercialization of bulk products from microalgae, like biofuels. To overcome these problems, a multi-product algal-based biorefinery has been proposed. This paper performs a techno-economic assessment of such a biorefinery. Four production pathways, ranging from a base case with commercial technologies to an improved case with innovative technologies, are analyzed. All region-specific parameters were adapted to Belgian conditions. Three scenarios result in techno-economically viable production plants. The most profitable scenario is the scenario which uses a specialized membrane for medium recycling and an open pond algae cultivation. Although the inclusion of a photobioreactor decreases the culture medium costs, the higher investment costs result in lower economic profits. The carotenoid content and price are identified as critical parameters. Furthermore, the economies of scale assumption for the photobioreactor is critical for the feasibility of this cultivation technology. The techno-economic assessment is an important methodology to guide and evaluate further improvements in research and shorten the time-to-market for innovative technologies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdo SM, Abo El-Enin SA, El-Khatib KM, El-Galad MI, Wahba SZ, El Diwani G, Ali GH (2016) Preliminary economic assessment of biofuel production from microalgae. Renew Sustain Energy Rev 55:1147–1153. doi:10.1016/j.rser.2015.10.119

    Article  CAS  Google Scholar 

  • SolarGIS (2015) http://solargis.info/doc/free-solar-radiation-maps-GHI. Accessed 16 Dec 2015

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353. doi:10.1016/j.biotechadv.2012.02.005

    Article  Google Scholar 

  • Aflalo C, Meshulam Y, Zarka A, Boussiba S (2007) On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 98:300–305. doi:10.1002/bit.21391

    Article  CAS  Google Scholar 

  • Beal CM et al (2015) Algal biofuel production for fuels and feed in a 100-ha facility: a comprehensive techno-economic analysis and life cycle assessment. Algal Research 10:266–279. doi:10.1016/j.algal.2015.04.017

    Article  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756. doi:10.1007/s10811-013-9983-9

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577. doi:10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  • Cerón MC, Campos I, Sánchez JF, Acién FG, Molina E, Fernández-Sevilla JM (2008) Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis biomass. J Agric Food Chem 56:11761–11766. doi:10.1021/jf8025875

    Article  Google Scholar 

  • Chauton MS, Reitan KI, Norsker NH, Tveterås R, Kleivdal HT (2015) A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture 436:95–103. doi:10.1016/j.aquaculture.2014.10.038

    Article  CAS  Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214. doi:10.1016/j.jbiotec.2013.07.020

    Article  CAS  Google Scholar 

  • De Baerdemaeker T, Lemmens B, Dotremont C, Fret J, Roef L, Goiris K, Diels L (2013) Benchmark study on algae harvesting with backwashable submerged flat panel membranes. Bioresour Technol 129:582–591. doi:10.1016/j.biortech.2012.10.153

    Article  Google Scholar 

  • Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174. doi:10.1007/s00253-007-0844-9

    Article  CAS  Google Scholar 

  • European Commission (2009) Directive 2009/32/EC of the European Parliament and of the Council of 23 April 2009 on the approximation of the laws of the Member States on extraction solvents used in the production of foodstuffs and food ingredients. Official J Eur Union, 9

  • European Parliament (2013) Report on innovating for sustainable growth: A bioeconomy for Europe (2012/2295(INI)). Committee on the Environment, Public Health and Food Safety. Rapporteur: Paolo Bartolozzi. Brussels, Belgium

  • Evens TJ, Niedz RP, Kirkpatrick GJ (2007) Temperature and irradiance impacts on the growth, pigmentation and photosystem II quantum yields of Haematococcus pluvialis (Chlorophyceae). J Appl Phycol 20:411–422. doi:10.1007/s10811-007-9277-1

    Article  Google Scholar 

  • Eykens L, Hitsov I, De Sitter K, Dotremont C, Pinoy L, Nopens I, Van der Bruggen B (2016) Influence of membrane thickness and process conditions on direct contact membrane distillation at different salinities. J Membr Sci 498:353–364. doi:10.1016/j.memsci.2015.07.037

    Article  CAS  Google Scholar 

  • García-González M et al (2003) Conditions for open-air outdoor culture of Dunaliella salina in southern Spain. J Appl Phycol 15:177–184

    Article  Google Scholar 

  • García-González M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis-beta-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115:81–90. doi:10.1016/j.jbiotec.2004.07.010

    Article  Google Scholar 

  • García-Malea Lopez MC et al (2006) Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J Biotechnol 123:329–342. doi:10.1016/j.jbiotec.2005.11.010

    Article  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Marine drugs 9:625–644. doi:10.3390/md9040625

    Article  CAS  Google Scholar 

  • Guiry MD (2012) How Many Species of Algae Are There? J Phycol 48:1057–1063. doi:10.1111/j.1529-8817.2012.01222.x

    Article  Google Scholar 

  • Hu CC, Lin JT, Lu FJ, Chou FP, Yang DJ (2008) Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract. Food Chem 109:439–446. doi:10.1016/j.foodchem.2007.12.043

    Article  CAS  Google Scholar 

  • Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land-surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res. doi:10.1029/2011jd017139

    Google Scholar 

  • JRC (2014) Microalgae-based products for the food and feed sector: an outlook for Europe. doi:10.2791/3339

  • Kuppens T et al (2015) Techno-economic assessment of fast pyrolysis for the valorization of short rotation coppice cultivated for phytoextraction. J Clean Prod 88:336–344. doi:10.1016/j.jclepro.2014.07.023

    Article  CAS  Google Scholar 

  • Leach G, Oliveira G, Morais R (1998) Spray-drying of Dunaliella salina to produce a ß-carotene rich powder. J Ind Microbiol Biotechnol 20:62–65

    Article  Google Scholar 

  • Lee RE (2008) Phycology vol, 4th edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232. doi:10.1016/j.rser.2009.07.020

    Article  CAS  Google Scholar 

  • Mendes-Pinto MM, Raposo MF, Bowen J, Young AJ, Morais R (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J Appl Phycol 13:19–24

    Article  Google Scholar 

  • Milledge JJ, Heaven S (2011) Disc Stack Centrifugation Separation and Cell Disruption of Microalgae: A Technical Note vol. 1. doi:10.5539/enrr.v1n1p17

  • Norsker NH, Barbosa MJ, Vermue MH, Wijffels RH (2011) Microalgal production–a close look at the economics. Biotechnol Adv 29:24–27. doi:10.1016/j.biotechadv.2010.08.005

    Article  CAS  Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioeactors. J Appl Phycol 12:8

    Article  Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:2. doi:10.1186/1746-1448-1-2

    Article  Google Scholar 

  • Osborn TJ, Jones PD (2014) The CRUTEM4 land-surface air temperature data set: construction, previous versions and dissemination via Google Earth. Earth System Science Data 6:61–68. doi:10.5194/essd-6-61-2014

    Article  Google Scholar 

  • Pacheco R et al (2015) The production of pigments & hydrogen through a Spirogyra sp. biorefinery. Energy Convers Manag 89:789–797. doi:10.1016/j.enconman.2014.10.040

    Article  CAS  Google Scholar 

  • Peters MS, Timmerhaus KD, West RE (2004) Plant design and economics for chemical engineers. McGrawHill, New York

    Google Scholar 

  • Picardo MC, de Medeiros JL, Monteiro JGM, Chaloub RM, Giordano M, de Araújo QF (2012) A methodology for screening of microalgae as a decision making tool for energy and green chemical process applications. Clean Technol Environ Policy 15:275–291. doi:10.1007/s10098-012-0508-z

    Article  Google Scholar 

  • Pokoo-Aikins G, Nadim A, El-Halwagi MM, Mahalec V (2009) Design and analysis of biodiesel production from algae grown through carbon sequestration. Clean Technol Environ Policy 12:239–254. doi:10.1007/s10098-009-0215-6

    Article  Google Scholar 

  • Prieto A, Pedro Canavate J, Garcia-Gonzalez M (2011) Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. J Biotechnol 151:180–185. doi:10.1016/j.jbiotec.2010.11.011

    Article  CAS  Google Scholar 

  • Quinn JC, Davis R (2015) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol 184:444–452. doi:10.1016/j.biortech.2014.10.075

    Article  CAS  Google Scholar 

  • Raja R, Hemaiswary AS, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88. doi:10.1080/10408410802086783

    Article  CAS  Google Scholar 

  • Rogers JN et al (2014) A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res 4:76–88. doi:10.1016/j.algal.2013.11.007

    Article  Google Scholar 

  • Ruiz-Aguirre A, Alarcón-Padilla D-C, Zaragoza G (2014) Productivity analysis of two spiral-wound membrane distillation prototypes coupled with solar energy. Desalination Water Treat 55:2777–2785. doi:10.1080/19443994.2014.946711

    Article  Google Scholar 

  • Shelef G, Sukenik A, Green M (1984) Microalgae harvesting and processing: a literature review. Solar Energy Research Institute, Golden, Colorado, United States of America

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. doi:10.1263/jbb.101.87

    Article  CAS  Google Scholar 

  • Subhadra BG, Edwards M (2011) Coproduct market analysis and water footprint of simulated commercial algal biorefineries. Appl Energy 88:3515–3523. doi:10.1016/j.apenergy.2010.12.051

    Article  Google Scholar 

  • Tafreshi AH, Shariati M (2006) Pilot culture of three strains of Dunaliella salina for β-carotene production in open ponds in the central region of Iran. World J Microbiol Biotechnol 22:1003–1006. doi:10.1007/s11274-006-9145-1

    Article  CAS  Google Scholar 

  • Taylor B et al (2013) Techno-economic assessment of carbon-negative algal biodiesel for transport solutions. Appl Energy 106:262–274. doi:10.1016/j.apenergy.2013.01.065

    Article  CAS  Google Scholar 

  • Van Dael M et al (2013) A techno-economic evaluation of a biomass energy conversion park. Appl Energy 104:611–622. doi:10.1016/j.apenergy.2012.11.071

    Article  Google Scholar 

  • Van Dael M, Kuppens T, Lizin S, Van Passel S (2014a) Techno-economic assessment of ultrasonic production of biofuels. In: Fang Z, Richard L. Smith J, Qi X (eds) Production of biofuels and chemicals with ultrasound. Biofuels and biorefineries, vol. 4. Springer Book Series—Biofuels and Biorefineries, Dordrecht, The Netherlands, pp 317–345

  • Van Dael M, Márquez N, Reumerman P, Pelkmans L, Kuppens T, Van Passel S (2014b) Development and techno-economic evaluation of a biorefinery based on biomass (waste) streams: case study in the Netherlands. Biofuels Bioprod Biorefin 8:635–644. doi:10.1002/bbb.1460

    Article  Google Scholar 

  • Verhoeve A, Kerselaers E, Baeyens D (2015) Stopgezette en leegstaande serres in de bloemenregio: Eindrapport. ILVO, Belgium

    Google Scholar 

  • Vigani M, Parisi C, Rodríguez-Cerezo E, Barbosa MJ, Sijtsma L, Ploeg M, Enzing C (2015) Food and feed products from micro-algae: market opportunities and challenges for the EU. Trends Food Sci Technol 42:81–92. doi:10.1016/j.tifs.2014.12.004

    Article  CAS  Google Scholar 

  • Waltz E (2009) Biotech’s green gold. Nat Biotechnol 27:4

    Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO(2) bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718. doi:10.1007/s00253-008-1518-y

    Article  CAS  Google Scholar 

  • Wang J, Sommerfeld MR, Lu C, Hu Q (2013) Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation. Algae 28:193–202. doi:10.4490/algae.2013.28.2.193

    Article  CAS  Google Scholar 

  • Xu Y, Boeing WJ (2014) Modeling maximum lipid productivity of microalgae: review and next step. Renew Sustain Energy Rev 32:29–39. doi:10.1016/j.rser.2014.01.002

    Article  CAS  Google Scholar 

  • Zhu L (2015) Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renew Sustain Energy Rev 41:1376–1384. doi:10.1016/j.rser.2014.09.040

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Herman Beckers, Metin Bulut, Frans Snijkers, Joris van der Have, Jan Vanderheyden, Leen Bastiaens, and Lies Eykens for the provision of technological and economic data and the useful discussions on the assumptions in the model. We would also like to thank Eva Cordery for proofreading the article and the anonymous reviewers for their valuable feedback and suggestions. Furthermore, we gratefully acknowledge the financial support of the Fundación Novia Salcedo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwenny Thomassen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 233 kb)

Supplementary material 2 (PDF 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomassen, G., Egiguren Vila, U., Van Dael, M. et al. A techno-economic assessment of an algal-based biorefinery. Clean Techn Environ Policy 18, 1849–1862 (2016). https://doi.org/10.1007/s10098-016-1159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1159-2

Keywords

Navigation