Skip to main content

Advertisement

Log in

Impact of treadmill locomotor training on skeletal muscle IGF1 and myogenic regulatory factors in spinal cord injured rats

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The objective of this study was to determine the impact of treadmill locomotor training on the expression of insulin-like growth factor I (IGF1) and changes in myogenic regulatory factors (MRFs) in rat soleus muscle following spinal cord injury (SCI). Moderate, midthoracic (T8) contusion SCIs were produced using a NYU (New York University) impactor. Animals were randomly assigned to treadmill training or untrained groups. Rats in the training group were trained starting at 1 week after SCI, for either 3 bouts of 20 min over 1.5 days or 10 bouts over 5 days. Five days of treadmill training completely prevented the decrease in soleus fiber size resulting from SCI. In addition, treadmill training triggered increases in IGF1, MGF and IGFBP4 mRNA expression, and a concurrent reduction of IGFBP5 mRNA in skeletal muscle. Locomotor training also caused an increase in markers of muscle regeneration, including small muscle fibers expressing embryonic myosin and Pax7 positive nuclei and increased expression of the MRFs, myogenin and MyoD. We concluded that treadmill locomotor training ameliorated muscle atrophy in moderate contusion SCI rats. Training-induced muscle regeneration and fiber hypertrophy following SCI was associated with an increase in IGF1, an increase in Pax7 positive nuclei, and upregulation of MRFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams GR (1998) Role of insulin-like growth factor-I in the regulation of skeletal muscle adaptation to increased loading. Exerc Sport Sci Rev 26:31–60

    Article  CAS  PubMed  Google Scholar 

  • Adams GR, Haddad F (1996) The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. J Appl Physiol 81:2509–2516

    CAS  PubMed  Google Scholar 

  • Adams GR, Haddad F, Baldwin KM (1999) Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol 87:1705–1712

    CAS  PubMed  Google Scholar 

  • Allen DL, Monke SR, Talmadge RJ, Roy RR, Edgerton VR (1995) Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol 78:1969–1976

    CAS  PubMed  Google Scholar 

  • Allouh MZ, Yablonka-Reuveni Z, Rosser BW (2008) Pax7 reveals a greater frequency and concentration of satellite cells at the ends of growing skeletal muscle fibers. J Histochem Cytochem 56:77–87

    Article  CAS  PubMed  Google Scholar 

  • Awede B, Thissen J, Gailly P, Lebacq J (1999) Regulation of IGF-I, IGFBP-4 and IGFBP-5 gene expression by loading in mouse skeletal muscle. FEBS Lett 461:263–267

    Article  CAS  PubMed  Google Scholar 

  • Barton ER (2006) The ABCs of IGF-I isoforms: impact on muscle hypertrophy and implications for repair. Appl Physiol Nutr Metab 31:791–797

    Article  CAS  PubMed  Google Scholar 

  • Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA 95:15603–15607

    Article  CAS  PubMed  Google Scholar 

  • Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  CAS  PubMed  Google Scholar 

  • Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139:244–256

    Article  CAS  PubMed  Google Scholar 

  • Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, Adams GR (2005) Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol 98:482–488

    CAS  PubMed  Google Scholar 

  • Carson JA, Booth FW (1998) Myogenin mRNA is elevated during rapid, slow, and maintenance phases of stretch-induced hypertrophy in chicken slow-tonic muscle. Pflugers Arch 435:850–858

    Article  CAS  PubMed  Google Scholar 

  • Chambers RL, McDermott JC (1996) Molecular basis of skeletal muscle regeneration. Can J Appl Physiol 21:155–184

    CAS  PubMed  Google Scholar 

  • Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270:12109–12116

    Article  CAS  PubMed  Google Scholar 

  • Day K, Shefer G, Richardson JB, Enikolopov G, Yablonka-Reuveni Z (2007) Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol 304:246–259

    Article  CAS  PubMed  Google Scholar 

  • Dupont-Versteegden EE, Houle JD, Gurley CM, Peterson CA (1998) Early changes in muscle fiber size and gene expression in response to spinal cord transection and exercise. Am J Physiol 275:C1124–C1133

    CAS  PubMed  Google Scholar 

  • Edgerton VR, Leon RD, Harkema SJ, Hodgson JA, London N, Reinkensmeyer DJ, Roy RR, Talmadge RJ, Tillakaratne NJ, Timoszyk W, Tobin A (2001) Retraining the injured spinal cord. J Physiol 533:15–22

    Article  CAS  PubMed  Google Scholar 

  • Engert JC, Berglund EB, Rosenthal N (1996) Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol 135:431–440

    Article  CAS  PubMed  Google Scholar 

  • Ewton DZ, Coolican SA, Mohan S, Chernausek SD, Florini JR (1998) Modulation of insulin-like growth factor actions in L6A1 myoblasts by insulin-like growth factor binding protein (IGFBP)-4 and IGFBP-5: a dual role for IGFBP-5. J Cell Physiol 177:47–57

    Article  CAS  PubMed  Google Scholar 

  • Faulkner JA, Brooks SV, Opiteck JA (1993) Injury to skeletal muscle fibers during contractions: conditions of occurrence and prevention. Phys Ther 73:911–921

    CAS  PubMed  Google Scholar 

  • Florini JR, Ewton DZ, Coolican SA (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 17:481–517

    CAS  PubMed  Google Scholar 

  • Gayraud-Morel B, Chretien F, Flamant P, Gomes D, Zammit PS, Tajbakhsh S (2007) A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Dev Biol 312:13–28

    Article  CAS  PubMed  Google Scholar 

  • Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37:1974–1984

    CAS  PubMed  Google Scholar 

  • Goldspink G (1999) Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J Anat 194(3):323–334

    Article  CAS  PubMed  Google Scholar 

  • Goldspink G (2005) Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology (Bethesda, MD) 20:232–238

    CAS  Google Scholar 

  • Goldspink DF, Cox VM, Smith SK, Eaves LA, Osbaldeston NJ, Lee DM, Mantle D (1995) Muscle growth in response to mechanical stimuli. Am J Physiol 268:E288–E297

    CAS  PubMed  Google Scholar 

  • Gomez-Pinilla F, Ying Z, Opazo P, Roy RR, Edgerton VR (2001) Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. Eur J Neurosci 13:1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Gregory CM, Bowden MG, Jayaraman A, Shah P, Behrman A, Kautz SA, Vandenborne K (2007) Resistance training and locomotor recovery after incomplete spinal cord injury: a case series. Spinal Cord 45:522–530

    Article  CAS  PubMed  Google Scholar 

  • Haddad F, Adams GR (2002) Selected contribution: acute cellular and molecular responses to resistance exercise. J Appl Physiol 93:394–403

    CAS  PubMed  Google Scholar 

  • Hutchinson KJ, Linderman JK, Basso DM (2001) Skeletal muscle adaptations following spinal cord contusion injury in rat and the relationship to locomotor function: a time course study. J Neurotrauma 18:1075–1089

    Article  CAS  PubMed  Google Scholar 

  • Hyatt JP, Roy RR, Baldwin KM, Edgerton VR (2003) Nerve activity-independent regulation of skeletal muscle atrophy: role of MyoD and myogenin in satellite cells and myonuclei. Am J Physiol 285:C1161–C1173

    CAS  Google Scholar 

  • Kadi F, Eriksson A, Holmner S, Butler-Browne GS, Thornell LE (1999) Cellular adaptation of the trapezius muscle in strength-trained athletes. Histochem Cell Biol 111:189–195

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Roy RR, Kim JA, Zhong H, Haddad F, Baldwin KM, Edgerton VR (2008) Gene expression during inactivity-induced muscle atrophy: effects of brief bouts of a forceful contraction countermeasure. J Appl Physiol 105:1246–1254

    Article  PubMed  Google Scholar 

  • Kosek DJ, Kim JS, Petrella JK, Cross JM, Bamman MM (2006) Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol 101:531–544

    Article  CAS  PubMed  Google Scholar 

  • Kunkel-Bagden E, Dai HN, Bregman BS (1993) Methods to assess the development and recovery of locomotor function after spinal cord injury in rats. Exp Neurol 119:153–164

    Article  CAS  PubMed  Google Scholar 

  • Legerlotz K, Smith HK (2008) Role of MyoD in denervated, disused, and exercised muscle. Muscle Nerve 38:1087–1100

    Article  CAS  PubMed  Google Scholar 

  • Levinovitz A, Jennische E, Oldfors A, Edwall D, Norstedt G (1992) Activation of insulin-like growth factor II expression during skeletal muscle regeneration in the rat: correlation with myotube formation. Mol Endocrinol 6:1227–1234

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhao Z, Song J, Feng Y, Wang Y, Li X, Liu Y, Yang P (2009) Cyclic force upregulates mechano-growth factor and elevates cell proliferation in 3D cultured skeletal myoblasts. Arch Biochem Biophys 490:171–176

    Article  CAS  PubMed  Google Scholar 

  • Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72

    CAS  PubMed  Google Scholar 

  • Liu M, Bose P, Walter GA, Anderson DK, Thompson FJ, Vandenborne K (2006) Changes in muscle T2 relaxation properties following spinal cord injury and locomotor training. Eur J Appl Physiol 97:355–361

    Article  PubMed  Google Scholar 

  • Liu M, Bose P, Walter GA, Thompson FJ, Vandenborne K (2008) A longitudinal study of skeletal muscle following spinal cord injury and locomotor training. Spinal Cord 46(7):488–493

    Article  CAS  PubMed  Google Scholar 

  • Moelling K, Schad K, Bosse M, Zimmermann S, Schweneker M (2002) Regulation of Raf-Akt cross-talk. J Biol Chem 277:31099–31106

    Article  CAS  PubMed  Google Scholar 

  • Murgia M, Serrano AL, Calabria E, Pallafacchina G, Lomo T, Schiaffino S (2000) Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat Cell Biol 2:142–147

    Article  CAS  PubMed  Google Scholar 

  • Psilander N, Damsgaard R, Pilegaard H (2003) Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle. J Appl Physiol 95:1038–1044

    CAS  PubMed  Google Scholar 

  • Reardon KA, Davis J, Kapsa RM, Choong P, Byrne E (2001) Myostatin, insulin-like growth factor-1, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy. Muscle Nerve 24:893–899

    Article  CAS  PubMed  Google Scholar 

  • Reese NB, Houle JD, Peterson CA (1994) Effects of fetal spinal cord (FSC) implants and exercise on muscle atrophy in chronic spinal rats. Soc Neurosci Abstr 20:1706

    Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953

    Article  CAS  PubMed  Google Scholar 

  • Roy RR, Talmadge RJ, Hodgson JA, Zhong H, Baldwin KM, Edgerton VR (1998) Training effects on soleus of cats spinal cord transected (T12–13) as adults. Muscle Nerve 21:63–71

    Article  CAS  PubMed  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    Article  CAS  PubMed  Google Scholar 

  • Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66

    Article  CAS  PubMed  Google Scholar 

  • Stevens JE, Liu M, Bose P, O’Steen WA, Thompson FJ, Anderson DK, Vandenborne K (2006) Changes in soleus muscle function and fiber morphology with one week of locomotor training in spinal cord contusion injured rats. J Neurotrauma 23:1671–1681

    Article  PubMed  Google Scholar 

  • Yang SY, Goldspink G (2002) Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett 522:156–160

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Alnaqeeb M, Simpson H, Goldspink G (1996) Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch. J Muscle Res Cell Motil 17:487–495

    Article  CAS  PubMed  Google Scholar 

  • Yoshida N, Yoshida S, Koishi K, Masuda K, Nabeshima Y (1998) Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates ‘reserve cells’. J Cell Sci 111(Pt 6):769–779

    CAS  PubMed  Google Scholar 

  • Zammit PS (2008) All muscle satellite cells are equal, but are some more equal than others? J Cell Sci 121:2975–2982

    Article  CAS  PubMed  Google Scholar 

  • Zdanowicz MM, Moyse J, Wingertzahn MA, O’Connor M, Teichberg S, Slonim AE (1995) Effect of insulin-like growth factor I in murine muscular dystrophy. Endocrinology 136:4880–4886

    Article  CAS  PubMed  Google Scholar 

  • Zeman RJ, Zhao J, Zhang Y, Zhao W, Wen X, Wu Y, Pan J, Bauman WA, Cardozo C (2009) Differential skeletal muscle gene expression after upper or lower motor neuron transection. Pflugers Arch 458:525–535

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Data were presented in part at the ACSM 54th annual meeting New Orleans May 2007. This work was supported by the Paralyzed Veterans Association, PVA Research Foundation Grant # 2347 and the National Institutes of Health (P01HD05975 and R01HD042955). Funding for Min Liu was provided through the Craig H. Neilsen foundation #84004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krista Vandenborne.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Stevens-Lapsley, J.E., Jayaraman, A. et al. Impact of treadmill locomotor training on skeletal muscle IGF1 and myogenic regulatory factors in spinal cord injured rats. Eur J Appl Physiol 109, 709–720 (2010). https://doi.org/10.1007/s00421-010-1392-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1392-z

Keywords

Navigation