Skip to main content
Log in

Light absorption process in a semiconductor infinite body with a cylindrical cavity via a novel photo-thermoelastic MGT model

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Photothermal spectroscopy is a method of measuring the optical absorption and thermal properties of semiconductor materials using high-sensitivity spectroscopic techniques. Heating occurs due to light, which is absorbed but not dissipated by emission. In this paper, a new model is provided that can be used to understand the process of optical thermal transfer and the interaction between elastic plasma waves and heat. The proposed photothermal model is described by the Moore–Gibson–Thompson heat equation. Using the proposed model, the thermal and photoacoustic effects in an infinite isotropic and homogeneous body with a cylindrical cavity of semiconductor material crossed into a fixed magnetic field and subjected to high-intensity laser heat flux were investigated. The inner surface of the cavity is considered to be traction-free, and the carrier density is photogenerated by a laser pulse heat flux that decays exponentially. The numerical calculations for the components of thermal stresses, displacement, temperature field, and carrier density are obtained using the Laplace transform approach. The propagation of heat, elastic, and plasma waves, as well as the distributions of each investigated field, were examined and explained. The comparison is also used to see how different thermal response features, such as thermal relaxation, laser pulse duration, and lifetime, affect the thermoelastic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  3. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  4. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. A Math. Phys. Eng. Sci. 432, 171–194 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15(2), 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  6. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abouelregal, A.E.: Modified fractional thermoelasticity model with multi-relaxation times of higher order: application to spherical cavity exposed to a harmonic varying heat. Waves Random Complex Media (2019). https://doi.org/10.1080/17455030.2019.1628320

    Article  Google Scholar 

  8. Abouelregal, A.E.: Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags. Mater. Res. Express 6(11), 116535 (2019)

    Article  Google Scholar 

  9. Abouelregal, A.E.: On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags. J. Appl. Comput. Mech. 6(3), 445–456 (2020)

    Google Scholar 

  10. Abouelregal, A.E.: A novel generalized thermoelasticity with higher-order time-derivatives and three-phase lags. Multidiscip. Model. Mater. Struct. 16(4), 689–711 (2019)

    Article  Google Scholar 

  11. Abouelregal, A.E.: Three-phase-lag thermoelastic heat conduction model with higher-order time-fractional derivatives. Indian J. Phys. 94, 1949–1963 (2020)

    Article  Google Scholar 

  12. Abouelregal, A.E., Elhagary, M.A., Soleiman, A., Khalil, K.M.: Generalized thermoelastic-diffusion model with higher-order fractional time-derivatives and four-phase-lags. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1730189

    Article  Google Scholar 

  13. Lasiecka, I., Wang, X.: Moore–Gibson–Thompson equation with memory, part II: general decay of energy. J. Diff. Equ. 259, 7610–7635 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity. Math. Mech. Solids 24, 4020–4031 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. 1, 100006 (2020)

    Google Scholar 

  16. Abouelregal, A.E., Ahmed, I.-E., Nasr, M.E., Khalil, K.M., Zakria, A., Mohammed, F.A.: Thermoelastic processes by a continuous heat source line in an infinite solid via Moore–Gibson–Thompson thermoelasticity. Materials 13(19), 4463 (2020)

    Article  Google Scholar 

  17. Abouelregal, A.E., Ahmad, H., Nofal, T.A., Abu-Zinadah, H.: Moore–Gibson–Thompson thermoelasticity model with temperature-dependent properties for thermo-viscoelastic orthotropic solid cylinder of infinite length under a temperature pulse. Phys. Scr. (2021). https://doi.org/10.1088/1402-4896/abfd63

    Article  Google Scholar 

  18. Aboueregal, A.E., Sedighi, H.M.: The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moore Gibson Thompson heat conduction model. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 235(5), 1004–1020 (2021)

    Google Scholar 

  19. Aboueregal, A.E., Sedighi, H.M., Shirazi, A.H., Malikan, M., Eremeyev, V.A.: Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore–Gibson–Thompson approach. Contin. Mech. Thermodyn. (2021). https://doi.org/10.1007/s00161-021-00998-1

    Article  Google Scholar 

  20. Abouelregal, A.E., Ersoy, H., Civalek, Ö.: Solution of Moore–Gibson–Thompson equation of an unbounded medium with a cylindrical hole. Mathematics 9(13), 1536 (2021)

    Article  Google Scholar 

  21. Kaltenbacher, B., Lasiecka, I., Marchand, R.: Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound. Control Cybern. 40, 971–988 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Bazarra, N., Fernández, J.R., Quintanilla, R.: Analysis of a Moore-Gibson-Thompson thermoelastic problem. J. Comput. Appl. Math. 382(15), 113058 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lotfy, K.: The elastic wave motions for a photothermal medium of a dual-phase-lag model with an internal heat source and gravitational field. Can. J. Phys. 94, 400–409 (2016)

    Article  Google Scholar 

  24. Gordon, J.P., Leite, R.C.C., Moore, R.S., et al.: Long- transient effects in lasers with inserted liquid samples. Bull. Am. Phys. Soc. 119, 501 (1964)

    Google Scholar 

  25. Todorovic, D.M., Nikolic, P.M., Bojicic, A.I.: Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors. J. Appl. Phys. 85, 7716 (1999)

    Article  Google Scholar 

  26. Song, Y.Q., Todorovic, D.M., Cretin, B., Vairac, P.: Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers. Int. J. Solids Struct. 47, 1871 (2010)

    Article  MATH  Google Scholar 

  27. Lotfy, K., Abo-Dahab, S.M.: Two-dimensional problem of two temperature generalized thermoelasticity with normal mode analysis under thermal shock problem. J. Comput. Theor. Nanosci. 12(8), 1709–1719 (2015)

    Article  Google Scholar 

  28. Othman, M.I.A., Lotfy, K.: The influence of gravity on 2-D problem of two temperature generalized thermoelastic medium with thermal relaxation. J. Comput. Theor. Nanosci. 12(9), 2587–2600 (2015)

    Article  Google Scholar 

  29. Lotfy, K., Othman, M.I.A.: Effect of rotation on plane waves in generalized thermo-microstretch elastic solid with a relaxation time. Meccanica 47(6), 1467–1486 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lotfy, K.: Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium. Silicon 11, 1863–1873 (2019)

    Article  Google Scholar 

  31. Youssef, H.M., El-Bary, A.A.: Generalized thermoelastic infinite layer subjected to ramp-type thermal and mechanical loading under three theories—state space approach. J. Therm. Stress. 32(12), 1293–1309 (2009)

    Article  Google Scholar 

  32. Ezzat, M., El-Bary, A.A., Ezzat, S.: Combined heat and mass transfer for unsteady MHD flow of perfect conducting micropolar fluid with thermal relaxation. Energy Convers. Manag. 52(2), 934–945 (2011)

    Article  Google Scholar 

  33. Ezzat, M.A., El-Bary, A.A.: MHD free convection flow with fractional heat conduction law. Magnetohydrodynamics 48(4), 503–522 (2012)

    Google Scholar 

  34. Ezzat, M.A., El-Bary, A.A.: Magneto-thermoelectric viscoelastic materials with memory-dependent derivative involving two-temperature. Int. J. Appl. Electromagn. Mech. 50(4), 549–567 (2016)

    Article  Google Scholar 

  35. Song, Y.Q., Bai, J.T., Ren, Z.Y.: Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory. Acta Mech. 223, 1545–1557 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Othman, M.I.A., Marin, M.: Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory. Results Phys. 7, 3863–3872 (2017)

    Article  Google Scholar 

  37. Rekhi, S., Tempere, J., Silvera, I.F.: Temperature determination for nanosecond pulsed laser heating. Rev. Sci. Instrum. 74(8), 3820–3825 (2003)

    Article  Google Scholar 

  38. Anzellini, S., Boccato, S.: A practical review of the laser-heated diamond anvil cell for university laboratories and synchrotron applications. Crystals 10(6), 459 (2020)

    Article  Google Scholar 

  39. Pasternak, S., Aquilanti, G., Pascarelli, S., Poloni, R., Canny, B., Coulet, M.-V., Zhang, L.: A diamond anvil cell with resistive heating for high pressure and high temperature x-ray diffraction and absorption studies. Rev. Sci. Instrum. 79(8), 085103 (2008)

    Article  Google Scholar 

  40. Yilbas, B.S., Al-Dweik, A.Y., Al-Aqeeli, N., Al-Qahtani, H.M.: Laser Pulse Heating of Surfaces and Thermal Stress Analysis. Verlag: Springer International Publishing, Heidelberg (2014)

    Book  Google Scholar 

  41. Todorovic, D.M.: Plasma, thermal, and elastic waves in semiconductors. Rev. Sci. Instrum. 74, 582 (2003)

    Article  Google Scholar 

  42. Vasilev, A.N., Sandomirskii, V.B.: Photoacoustic effects in finite semiconductors. Sov. Phys. Semicond. 18, 1095 (1984)

    Google Scholar 

  43. Cattaneo, C.: A form of heat-conduction equations which eliminates the paradox of instantaneous propagation. C. R. 247, 431–433 (1958)

    MATH  Google Scholar 

  44. Vernotte, P.: Les paradoxes de la theorie continue de l’equation de lachaleur. C. R. 246, 3154–3155 (1958)

    MATH  Google Scholar 

  45. Vernotte, P.: Some possible complications in the phenomena of thermal conduction. C. R. 252, 2190–2191 (1961)

    Google Scholar 

  46. Abouelregal, A.E.: Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags. Mater. Res. Express 6, 116535 (2019)

    Article  Google Scholar 

  47. Zenkour, A.M., Abouelregal, A.E.: Effect of temperature dependency on constrained orthotropic unbounded body with a cylindrical cavity due to pulse heat flux. J. Therm. Sci. Technol. 10(1), JTST0019–JTST0019 (2015)

    Article  Google Scholar 

  48. Honig, G., Hirdes, U.: A method for the numerical inversion of Laplace transform. J. Comp. Appl. Math. 10, 113–132 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tzou, D.Y.: Macro-To Micro-Scale Heat Transfer: The Lagging Behavior. Taylor & Francis, Abingdon (1997)

    Google Scholar 

  50. Abbas, I.A., Aly, K.A.: A study on photothermal waves in a semiconductor material photogenerated by a focused laser beam. J. Mol. Eng. Mater. 04(02), 1650003 (2016)

    Article  Google Scholar 

  51. Lotfy, K., Hassan, W., El-Bary, A.A., Kadry, M.A.: Response of electromagnetic and Thomson effect of semiconductor medium due to laser pulses and thermal memories during photothermal excitation. Results Phys. 16, 102877 (2020)

    Article  Google Scholar 

  52. Khamis, A.K., El-Bary, A.A., Lotfy, K., Bakali, A.: Photothermal excitation processes with refined multi dual phase-lags theory for semiconductor elastic medium. Alex. Eng. J. 59(1), 1–9 (2020)

    Article  Google Scholar 

  53. Abouelregal, A.E.: Magnetophotothermal interaction in a rotating solid cylinder of semiconductor silicone material with time dependent heat flow. Appl. Math. Mech. Engl. Ed. 42, 39–52 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  54. Alharbi, A.M., Bayones, F.S.: Generalized magneto-thermo-viscoelastic problem in an infinite circular cylinder in two models subjected to rotation and initial stress. Appl. Math. Inf. Sci. 12(5), 1055–1066 (2018)

    Article  MathSciNet  Google Scholar 

  55. Soleiman, A., Abouelregal, A.E., Ahmad, H., Thounthong, P.: Generalized thermoviscoelastic model with memory dependent derivatives and multi-phase delay for an excited spherical cavity. Phys. Scr. 95(11), 115708 (2020)

    Article  Google Scholar 

  56. Trajkovski, D., Čukić, R.: A coupled problem of thermoelastic vibrations of a circular plate with exact boundary conditions. Mech. Res. Commun. 26(2), 217–224 (1999)

    Article  MATH  Google Scholar 

  57. Wang, X., Xu, X.: Thermoelastic wave in metal induced by ultrafast laser pulses. J. Therm. Stress. 25(5), 457–473 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Deanship of Scientific Research at Jouf University for funding this work through research Grant No. (DSR-2021-03-03177). We would also like to extend our sincere thanks to the College of Science and Arts in Al-Qurayyat for their support.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results, reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Ahmed E. Abouelregal.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr, M.E., Abouelregal, A.E. Light absorption process in a semiconductor infinite body with a cylindrical cavity via a novel photo-thermoelastic MGT model. Arch Appl Mech 92, 1529–1549 (2022). https://doi.org/10.1007/s00419-022-02128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02128-y

Keywords

Navigation