Skip to main content
Log in

The synthesis of elemental selenium particles by Synechococcus leopoliensis

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Exposure of Synechococcus leopoliensis to selenite in the light resulted in orange-colored granules associated with the cells. No such particles were made in dark grown cells or when selenite was replaced by selenate. Light and scanning electron microscopy revealed that the particles formed inside the cells. Furthermore, these were easily extracted and shown to be composed of selenium as determined by energy-dispersive X-ray spectroscopy. During selenium particle synthesis there was a concurrent loss of organic pigments in the cyanobacteria. Cells also become heavier as they produced and accumulated particles which were on average 220 nm in diameter and generally spherical in shape. The decline in selenite concentration in the culture media can be accounted for by the formation of cellular elemental selenium (Se(0)) during particle formation, although synthesis of small amounts of other Se compounds cannot be entirely discounted. Photosynthetic activity is required for the formation of Se(0), implicating the involvement of thylakoids. It is possible that an intimate association between the nascent particles and the thylakoids occurred. However, Se(0) granule formation did not occur peripherally between the thylakoid and the cytoplasmic membranes, but inside the thylakoid bands towards the center of the cells. It then appears that the particles are mobilized to the periphery and expelled from the cells, causing irreparable damage to the cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Hamid MI, Skulberg OM (1995) Effect of selenium on the growth of some selected green and blue-green algae. Lakes Reserv Res Manag 1:205–211

    Article  Google Scholar 

  • Araie H, Shiraiwa Y (2009) Selenium utilization strategy by microalgae. Molecules 14:4880–4891

    Article  PubMed  CAS  Google Scholar 

  • Biswas KC, Barton LL, Tsui WL, Shuman K, Gillespie J, Eze CS (2011) A novel method for the measurement of elemental selenium produced by bacterial reduction of selenite. J Microbiol Methods 86:140–144

    Article  PubMed  CAS  Google Scholar 

  • Bosak T, Liang B, Wu T, Templer SP, Evans A, Vali H, Guerquin-Kern J, Klepac-Ceraj V, Sim MS, Mui J (2012) Cyanobacterial diversity and activity in modern conical microbialites. Geobiology 10:384–401

    Article  PubMed  CAS  Google Scholar 

  • Chu T, Murray SR, Todd J, Perez W, Yarborough JR, Okafor C, Lee LH (2012) Adaption of Synechococcus sp. IU 625 to growth in the presence of mercuric chloride. Acta Histochem 114:6–11

    Article  PubMed  CAS  Google Scholar 

  • Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 9:52

    Article  PubMed  Google Scholar 

  • Fesharaki PJ, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, Shahverdi AR (2010) Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol 41:461–466

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156: 609–643

    Google Scholar 

  • Gouget B, Avoscan L, Sarret G, Collins R, Carriere M (2005) Resistance, accumulation and transformation of selenium by the cyanobacterium Synechocystis sp. PCC 6803 after exposure to inorganic SeVI or SeIV. Radiochim Acta 93:683–689

    Article  CAS  Google Scholar 

  • Gu Y, Cui R, Zhang Z, Xie Z, Pang D (2012) Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc 134:79–82

    Google Scholar 

  • Hunter WJ, Kuykendall LD (2005) Removing selenite from groundwater with an in situ biobarrier: laboratory studies. Curr Microbiol 50:145–150

    PubMed  CAS  Google Scholar 

  • Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65:4734–4740

    PubMed  CAS  Google Scholar 

  • Kiffney P, Knight A (1990) The toxicity and bioaccumulation of selenate, selenite and seleno-L-methionine in the cyanobacterium Anabaena flos-aquae. Arch Environ Contam Toxicol 19:488–494

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Yuan Q, Zhu H, Li Y, Guo Q, Wang Q, Bi X, Gao X (2011) The suppression of prostate LNCaP cancer cells growth by selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials 32:6515–6522

    Article  PubMed  CAS  Google Scholar 

  • Kumar HD, Prakash G (1971) Toxicity of selenium to the blue-green algae, Anacystis nidulans and Anabaena variabilis. Ann Bot 35:697–705

    CAS  Google Scholar 

  • Levine VE (1936) Precipitation and color reaction for ascorbic acid. Proceedings of the Society for Experimental Biology and Medicine. Soc Exp Biol Med 35:231–235, New York, N.Y

  • Li Z, Guo S, Li L (2003) Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresour Technol 89:171–176

    Article  PubMed  CAS  Google Scholar 

  • Martens DA (2007) Selenium. In: Stanley WT (ed) Encyclopedia of Water Science, 2nd edn. CRC Press, pp 1041–1043

  • Matsumoto M, Miyashita H, Takeyama H, Matsunaga T (2002) Screening of buoyant marine cyanobacteria using sucrose gradient centrifugation. J Appl Phycol 14:91–95

    Article  Google Scholar 

  • McDermott JR, Rosen BP, Liu Z (2010) Jen1p: a high affinity selenite transporter in yeast. Mol Biol Cell 21:3934–3941

    Article  PubMed  CAS  Google Scholar 

  • Morlon H, Fortin C, Adam C, Garnier-Laplace J (2006) Selenite transport and its inhibition in the unicellular green alga Chlamydomonas reinhardtii. Environ Toxicol Chem 25:1408–1417

    Article  PubMed  CAS  Google Scholar 

  • Nevo RF, Charuvi DF, Shimoni EF, Schwarz RF, Kaplan AF, Ohad IF, Reich Z (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J 26:1467–1473

    Article  PubMed  CAS  Google Scholar 

  • Niu Y, Qin A, Song W, Wang M, Gu X, Zhang Y, Yu M, Zhao X, Dai M, Yan L, Li Z, Fan Y (2012) Biocompatible single-crystal selenium nanobelt based nanodevice as a temperature-tunable photosensor. J Nanomater 2012:1–6

  • Oluwafemi OS, Revaprasadu N, Adeyemi OO (2010) A facile "green" synthesis of ascorbic acid-capped ZnSe nanoparticles. Colloid Surf B 79:126–130

    Article  CAS  Google Scholar 

  • Prakash N, Sharma N, Prakash R, Raina KK, Fellowes J, Pearce CI, Lloyd JR, Pattrick RA (2009) Aerobic microbial manufacture of nanoscale selenium: exploiting nature’s bio-nanomineralization potential. Biotechnol Lett 31:1857–1862

    Article  PubMed  CAS  Google Scholar 

  • Pronina NA, Kovshova YI, Popova VV, Lapin AB, Alekseeva SG, Baum RF, Mishina IM, Tsoglin LN (2002) The effect of selenite ions on growth and selenium accumulation in Spirulina platensis. Russ J Plant Physiol 49:235–241

    Article  CAS  Google Scholar 

  • Risher J, McDonald AR, Citra MJ, Bosch S, Amata RJ (2003) Toxicological Profile for Selenium. U.S. Department of Health and Human Services, Atlanta, 418 pp

    Google Scholar 

  • Robel I, Subramanian V, Kuno M, Kamat PV (2006) Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J Am Chem Soc 128:2385–2393

    Article  PubMed  CAS  Google Scholar 

  • Saggu M, Jain A, Bagchi D (2010) Sodium selenate effect on Synechococcus elongatus PCC 7942: appearance of novel enzymatic reaction, ATP: selenate adenylyltransferase, and variation in antioxidant enzyme activities. J Basic Microbiol 50:351–359

    Article  PubMed  CAS  Google Scholar 

  • Sielicki M, Burnham JC (1973) The effect of selenite on the physiological and morphological properties of the blue-green alga Phormidium luridum var. olivacea. J Phycol 9:509–514

    CAS  Google Scholar 

  • Tarze A, Dauplais M, Grigoras I, Lazard M, Ha-Duong NT, Barbier F, Blanquet S, Plateau P (2007) Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae. J Biol Chem 282:8759–8767

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Webster TJ (2012) Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices. J Biomed Mater Res A 100:3205–3210

    PubMed  Google Scholar 

  • Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42:1524–1533

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloid Surf B 80:94–102

    Article  CAS  Google Scholar 

  • Yadav V, Sharma N, Prakash R, Raina KK, Bharadwaj LM, Prakash NT (2008) Generation of selenium containing nano-structures by soil bacterium, Pseudomonas aeruginosa. Biotechnology (Faisalabad) 7:299–304

    Article  CAS  Google Scholar 

  • Ye J, Rensing C, Rosen BP, Zhu YG (2012) Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci 17:155–162

    Article  PubMed  CAS  Google Scholar 

  • Yin XX, Chen J, Qin J, Sun GX, Rosen BP, Zhu YG (2011) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol 156:1631–1638

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Wang L, Bai R, Huang H, Sun G (2012) Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803. Water Air Soil Pollut 223:1183–1190

    Article  CAS  Google Scholar 

  • Zechmann B, Tomasic A, Horvat L, Fulgosi H (2010) Subcellular distribution of glutathione and cysteine in cyanobacteria. Protoplasma 246:65–72

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wang X, Xu T (2008) Elemental selenium at nano size (nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with Se-methylselenocysteine in mice. Toxicol Sci 101:22–31

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Natural Sciences and Engineering Council of Canada and the Advisory Research Committee of Queen′s University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel D. Lefebvre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hnain, A., Brooks, J. & Lefebvre, D.D. The synthesis of elemental selenium particles by Synechococcus leopoliensis . Appl Microbiol Biotechnol 97, 10511–10519 (2013). https://doi.org/10.1007/s00253-013-5304-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5304-0

Keywords

Navigation