Skip to main content
Log in

Adaptive Evolution Involving Gene Duplication and Insertion of a Novel Ty1/copia-Like Retrotransposon in Soybean

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Gene duplication is a major force for generating evolutionary novelties that lead to adaptations to environments. We previously identified two paralogs encoding phytochrome A (phyA), GmphyA1 and GmphyA2, in soybean, a paleopolyploid species. GmphyA2 is encoded by the E4 locus responsible for photoperiod sensitivity. In photoperiod insensitive lines, GmphyA2 is inactivated by the insertion of a retrotransposon in exon 1. Here, we describe the detailed characterization of the element and its evolutionary significance inferred from the distribution of the allele that harbors the element. Structural characteristics indicated that the element, designated SORE-1, is a novel Ty1/copia-like retrotransposon in soybean, which was phylogenetically related to the Sto-4, BARE-1, and RIRE1 elements. The element was transcriptionally active, and the transcription was partially repressed by an epigenetic mechanism. Sequences homologous with SORE-1 were detected in a genome sequence database of soybean, most of which appeared silent. GmphyA2 that harbors the SORE-1 insertion was detected only in cultivated soybean lines grown in northern regions of Japan, consistent with the notion that photoperiod insensitivity caused by the dysfunction of GmphyA2 is one of genetic changes that allowed soybean cultivation at high latitudes. Taking into account that genetic redundancy is conferred by the two phyA genes, we propose a novel model for the consequences of gene duplication and transposition of retrotransposons: when the gene is duplicated, retrotransposon insertion that causes the loss of a gene function can lead to adaptive evolution while the organism is sustained by the buffering effect brought about by gene duplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe J, Xu DH, Miyano A, Komatsu K, Kanazawa A, Shimamoto Y (2003) Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. Crop Sci 43:1300–1304

    Article  Google Scholar 

  • Aminetzach YT, Macpherson JM, Petrov DA (2005) Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science 309:764–767

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya MK, Gonzales RA, Kraft M, Buzzell RI (1997) A copia-like retrotransposon Tgmr closely linked to the Rps1-k allele that confers race-specific resistance of soybean to Phytophthora sojae. Plant Mol Biol 34:255–264

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402

    Article  PubMed  CAS  Google Scholar 

  • Buzzell RI, Voldeng HD (1980) Inheritance of insensitivity to long daylength. Soybean Genet Newslett 7:26–29

    Google Scholar 

  • Cober ER, Tanner JW, Voldeng HD (1996) Soybean photoperiod-sensitivity loci respond differentially to light quality. Crop Sci 36:606–610

    Article  Google Scholar 

  • Doebley J (2006) Unfallen grains: how ancient farmers turned weeds into crops. Science 312:318–319

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploidy wheat under domestication. Science 316:1862–1866

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan Y, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Haren LB, Ton-Hoang B, Chandler M (1999) Integrating DNA: transposases and retroviral integrases. Annu Rev Microbiol 53:245–281

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528

    PubMed  CAS  Google Scholar 

  • Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118–122

    Article  PubMed  CAS  Google Scholar 

  • Hokkaido Prefectural Tokachi Agricultural Experiment Station (1988) The origins and characteristics of soybean accessions. Misc Pub Hokkaido Pref Tokachi Agric Expt Sta 11:1–175

    Google Scholar 

  • Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond B 256:119–124

    Article  CAS  Google Scholar 

  • Hymowitz T (2004) Speciation and cytogenetics. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses, Ed 3, Agronomy Monograph No. 16. American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc. Madison, WI, pp 97–136

  • Ivashuta S, Naumkina M, Gau M, Uchiyama K, Isobe S, Mizukami Y, Shimamoto Y (2002) Genotype-dependent transcriptional activation of novel repetitive elements during cold acclimation of alfalfa (Medicago sativa). Plant J 31:615–627

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjunct genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG, Lisch D (1997) Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci USA 94:7704–7711

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Lackey JA (1980) Chromosome numbers in the Phaseoleae (Fabaceae: Faboideae) and their relation to taxonomy. Am J Bot 67:595–602

    Article  Google Scholar 

  • Laten HM, Majumdar A, Gaucher EA (1998) SIRE-1, a copia/TY1-like retroelement from soybean, encodes a retroviral envelope-like protein. Proc Natl Acad Sci USA 95:6897–6902

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Bush AL, Specht JE, Shoemaker RC (1999) Mapping of duplicate genes in soybean. Genome 42:829–836

    Article  CAS  Google Scholar 

  • Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007

    Article  PubMed  CAS  Google Scholar 

  • Lohnes DG, Specht JE, Cregan PB (1997) Evidence for homoeologous linkage groups in the soybean. Crop Sci 37:254–257

    CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    PubMed  CAS  Google Scholar 

  • Malik HS, Eickbush TH (2001) Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res 11:1187–1197

    Article  PubMed  CAS  Google Scholar 

  • Mathieu M, Winters EK, Kong F, Wan J, Wang S, Eckert H, Luth D, Paz M, Donovan C, Zhang Z, Somers D, Wang K, Nguyen H, Shoemaker RC, Stacey G, Clemente T (2009) Establishment of a soybean (Glycine max Merr. L) transposon-based mutagenesis repository. Planta 229:279–289

    Article  PubMed  CAS  Google Scholar 

  • McDonald JF (1995) Transposable elements: possible catalysts of organic evolution. Trends Ecol Evol 10:123126

    Article  Google Scholar 

  • Mhiri C, Morel JB, Vernhettes S, Casacuberta JM, Lucas H, Grandbastien MA (1997) The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol Biol 33:257–266

    Article  PubMed  CAS  Google Scholar 

  • Miyao A, Iwasaki Y, Kitano H, Itoh J, Maekawa M, Murata K, Yatou O, Nagato Y, Hirochika H (2007) A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol Biol 63:625–635

    Article  PubMed  CAS  Google Scholar 

  • Moore C, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128

    Article  PubMed  CAS  Google Scholar 

  • Muotri AR, Marchetto MCN, Coufal NG, Gage FH (2007) The necessary junk: new functions for transposable elements. Human Mol Genet 16:R159–R167

    Article  CAS  Google Scholar 

  • Nagamatsu A, Masuta C, Senda M, Matsuura H, Kasai A, Hong JS, Kitamura K, Abe J, Kanazawa A (2007) Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. Plant Biotechnol J 5:778–790

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Tsuchiya T (1991) Soybean. In: Nomura N, Sasaki K, Sanbuichi K, Nakamura S, Minami T, Tsuchiya T, Chiba K, Iida S, Okuyama T, Tsukada Y (eds) Legume varieties in Hokkaido. Japan Beans and Peas Foundation, Tokyo, pp 37–158

    Google Scholar 

  • Neff MM, Chory J (1998) Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol 118:27–36

    Article  PubMed  CAS  Google Scholar 

  • Petersoon-Burch BD, Voytas DF (2002) Genes of the Pseudoviridae (Ty1/copia retrotransposons). Mol Biol Evol 19:1832–1845

    Google Scholar 

  • Pouteau S, Grandbastien M-A, Boccara M (1994) Microbial elicitors of plant defence responses activate transcription of a retrotransposon. Plant J 5:532–542

    Article  Google Scholar 

  • Rodin SN, Riggs AD (2003) Epigenetic silencing may aid evolution by gene duplication. J Mol Evol 56:718–729

    Article  PubMed  CAS  Google Scholar 

  • Saindon G, Voldeng HD, Beversdorf D, Buzzell RI (1989) Genetic control of long daylength response in soybean. Crop Sci 29:1436–1439

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868–876

    Article  PubMed  CAS  Google Scholar 

  • Schlueter JA, Scheffler BE, Schlueter SD, Shoemaker RC (2006) Sequence conservation of homoeologous bacterial artificial chromosomes and transcription of homoeologous genes in soybean (Glycine max L. Merr). Genetics 174:1017–1028

    Article  PubMed  CAS  Google Scholar 

  • Schlueter JA, Vasylenko-Sanders IF, Deshpande S, Yi J, Siegfried M, Roe BA, Schlueter SD, Scheffler BE, Shoemaker RC (2007) The FAD2 gene family of soybean: insights into the structural and functional divergence of a paleopolyploid genome. Crop Sci 47:S-14–S-26

    Google Scholar 

  • Shoemaker RC, Polzin K, Labate J, Specht JE, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP, Kochert G, Boerma HR (1996) Genome duplication in soybean (Glycine subgenus Soja). Genetics 144:329–338

    PubMed  CAS  Google Scholar 

  • Shoemaker RC, Schlueter JA, Doyle JF (2006) Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 9:104–109

    Article  PubMed  CAS  Google Scholar 

  • Smyth DR, Kalitsis P, Joseph JL, Sentry JW (1989) Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila. Proc Natl Acad Sci USA 86:5015–5019

    Article  PubMed  CAS  Google Scholar 

  • Takano M, Kanegae H, Shinomura T, Miyano A, Hirochika H, Furuya M (2001) Isolation and characterization of rice phytochrome A mutants. Plant Cell 13:521–534

    Article  PubMed  CAS  Google Scholar 

  • Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17:3311–3325

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Sugimoto K, Otsuki H, Hirochika H (1999) A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in response to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J 18:383–393

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tozuka A, Fukushi H, Hirata T, Ohara M, Kanazawa A, Mikami T, Abe J, Shimamoto Y (1998) Composite and clinal distribution of Glycine soja in Japan revealed by RFLP analysis of mitochondrial DNA. Theor Appl Genet 96:170–176

    Article  CAS  Google Scholar 

  • Weller JL, Murfet IC, Reid JB (1997) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol 114:1225–1236

    PubMed  CAS  Google Scholar 

  • Weller JL, Beauchamp N, Kerckhoffs LHJ, Platten JD, Reid JB (2001) Interaction of phytochromes A and B in the control of de-etiolation and flowering in pea. Plant J 26:283–294

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Su Y, Sakamoto W, Sodmergen (2007) Isolation and characterization of TY1/copia-like retrotransposons in mung bean (Vigna radiata). J Plant Res 120:323–328

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Eickbush TH (1988) Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Mol Biol Evol 5:675–690

    PubMed  CAS  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    PubMed  CAS  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yauda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  PubMed  CAS  Google Scholar 

  • Yano ST, Panbehi B, Das A, Laten HM (2005) Diaspora, a large family of Ty3-gypsy retrotransposons in Glycine max, is an envelope-less member of an endogenous plant retrovirus lineage. BMC Evol Biol 5:30

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Schupp JM, Oliphant A, Keim P (1994) Hypomethylated sequences: characterization of the duplicated soybean genome. Mol Gen Genet 244:638–645

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kanazawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 80 kb)

Supplementary material 2 (PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanazawa, A., Liu, B., Kong, F. et al. Adaptive Evolution Involving Gene Duplication and Insertion of a Novel Ty1/copia-Like Retrotransposon in Soybean. J Mol Evol 69, 164–175 (2009). https://doi.org/10.1007/s00239-009-9262-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9262-1

Keywords

Navigation