Skip to main content
Log in

Research progress of improving surface friction properties by surface texture technology

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the process of machine and machinery operation, it is inevitable to face problems such as friction and wear. At present, there are many solutions to solve the problem of friction and wear. As an effective method, surface texture technology has been widely concerned by scholars in China and abroad. In recent years, surface texture technology has made great achievements in the research of friction pair surface, which is of great significance to improve the surface tribological properties. In this paper, the background and development of surface texture are analyzed, and the research purpose and development status are pointed out. The friction mechanism of surface texture is summarized, and the reason of the mechanism is explained. The optimization of morphology and parameters was discussed, and the range of optimal parameters was obtained. Then the surface texture preparation technology is summarized, and the advantages and disadvantages of the main methods are summarized one by one. Then, the less studied composite texture and the synergistic effect of texture technology and other surface technologies are briefly introduced. The effect of composite texture on tribological properties depends on the type of texture combination, and the synergistic effect with other technologies can effectively improve the shortcomings of single technology, which is worthy of further study. Finally, the above aspects of the full text are summarized, and the problems faced in all aspects are put forward. Combined with the actual situation of the current research, the future development prospect of surface texture technology is prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Availability of data and material

Transparent.

Code availability

Not applicable.

References

  1. Zhang B, Xu BS, Xu Y, Zhang BS (2011) Research status of micro-and nano-materials in lubricating additives. Tribology 31:194–204. https://doi.org/10.16078/j.tribology.2011.02.015

    Article  Google Scholar 

  2. Rodrigues TA, Costa HL, da Silva Jr WM (2021) Sliding wear behavior of electrochemically textured surfaces under different lubrication regimes: effects of curvature radius. Wear.:203817. https://doi.org/10.1016/j.wear.2021.203817

  3. Yu RF, Chen W (2017) Research progress and prospect of surface texturing in industrial tribology. J Mech Eng 53:100–110. https://doi.org/10.3901/JME.2017.03.100

    Article  Google Scholar 

  4. Xu L, Zheng JH, Wu S, Wei XX, Wang JJ (2018) Recent development on surface texturing for improving tribological properties. Tool Eng 52:7–12. https://doi.org/10.16567/j.cnki.1000-7008.2018.04.002

    Article  Google Scholar 

  5. Zhang SW (2001) An approach to the developing ways of tribology in China. Tribology 21:31–323. https://doi.org/10.16078/j.tribology.2001.05.001

    Article  Google Scholar 

  6. Liu WM, Xue QJ (2000) Research and development of tribology. China Mechan Eng 11(1):77–80

    Google Scholar 

  7. Song TH (2008) Review of tribology development in China. Tribology 28:94–96. https://doi.org/10.16078/j.tribology.2008.01.001

    Article  Google Scholar 

  8. Yu HW, Wang XL, Zhou F (2010) Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces. Tribol Lett 37:123–130. https://doi.org/10.1007/s11249-009-9497-4

    Article  Google Scholar 

  9. Hao XQ, Song XL, Li L (2016) Development and perspective of surface texturing tools. Surf Technol 45:170–181. https://doi.org/10.16490/j.cnki.issn.1001-3660.2016.09.026

    Article  Google Scholar 

  10. Yang C, Liu XJ, Yang HD, Liu K (2015) Effect of the textured surface on the cutting performance of the tool and the friction property for the rake face. Tribology 35:228–235. https://doi.org/10.16078/j.tribology.2015.02.015

    Article  Google Scholar 

  11. Su YS, Li L, Fang M, Huang SZ (2019) Development and perspective of surface texture gear. Lubr Eng 44:125–129. https://doi.org/10.3969/j.issn.0254-0150.2019.12.022

    Article  Google Scholar 

  12. Zhang JY, Meng YG (2012) Optimal design of surface texture in parallel thrust bearings. J Mech Eng 48:91–99. https://doi.org/10.3901/JME.2012.17.091

    Article  Google Scholar 

  13. Wang GR, Liao DS, Jiang SK, He X, Liao WL, Zhong L, Jiang L, Yang CH (2018) Research progress of bionic surface texture and its application prospect in oil and gas equipment field. Surf Technol 47:14–22. https://doi.org/10.16490/j.cnki.issn.1001-3660.2018.08.003

    Article  Google Scholar 

  14. Borghi A, Gualttieri E, Marchetto D, Moretti L, Valeri S (2008) Tribological effects of surface texturing on nitriding steel for high-performance engine applications. Wear 265:1046–1051. https://doi.org/10.1016/j.wear.2008.02.011

    Article  Google Scholar 

  15. Deng JX, Wu Z, Lian YS, Qi T, Cheng J (2012) Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes. Int J Refract Met Hard Mater 30:164–172. https://doi.org/10.1016/j.ijrmhm.2011.08.002

    Article  Google Scholar 

  16. Zhao WJ, Zeng ZX, Wang LP, Chen JM, Xue QJ (2011) Fabrication and wetting behaviors of regular textured silicon surfaces. China Surf Eng 24:4–10. https://doi.org/10.3969/j.issn.1007-9289.2011.03.002

    Article  Google Scholar 

  17. He GQ, Sun N, He Y, Yan HZ, Deng SJ, Wang QL (2017) Influence of tooth surface pits of face-gears on isothermal elastohydrodynamic lubrication. Lubr Eng 42:67–76. https://doi.org/10.3969/j.issn.0254-0150.2017.02.013v

    Article  Google Scholar 

  18. Qiu XC, Fan ST, Wu Y (2013) Study of surface texture for improving friction and wear properties. Lubr Eng 38:121–124. https://doi.org/10.3969/j.issn.0254-0150.2013.08.025

    Article  Google Scholar 

  19. Zhang H, Liu Y, Wang W, Qin LG, Dong GN (2019) Surface texture design and its tribological application. J Mech Eng 55:85–93. https://doi.org/10.3901/JME.2019.17.085

    Article  Google Scholar 

  20. Cai X (2018) The optimal design of micro-textured turning tools and study on their cutting performance. Master Thesis, School of Mechanical Engineering Southeast University, Nanjing

    Google Scholar 

  21. Hamilton DB, Walowit JA, Allen CMA (1966) Theory of lubrication by micro asperities. J Basic Eng 88:177–185. https://doi.org/10.1115/1.3645799

    Article  Google Scholar 

  22. Etsion (2004) Improving tribological performance of mechanical components by laser surface texturing. Tribol Lett 17:733–737. https://doi.org/10.1520/STP38293S

    Article  Google Scholar 

  23. Wang JQ, Wang XL (2015) State of the art in innovative design of surface texture. J Mech Eng 51:84–95. https://doi.org/10.3901/JME.2015.23.084

    Article  Google Scholar 

  24. Zhang SW (2018) Prospects for the development of biomimetic tribology. Lubr Eng 43:1–2. https://doi.org/10.3969/j.issn.0254-0150.2018.01.001

    Article  Google Scholar 

  25. Liu XM, Zhao DC, Chen L, Luo LH (2019) Biomimetic biological tribological development status and application prospect. Chin J Constr Mach 17:95–101. https://doi.org/10.15999/j.cnki.311926.2019.02.001

    Article  Google Scholar 

  26. Huang QP, Shi XL, Xue YW, Zhang KP, Wu CH (2021) Optimization of bionic textured parameter to improve the tribological performance of AISI 4140 self-lubricating composite through response surface methodology. Tribol Int 161:107104. https://doi.org/10.1016/j.triboint.2021.107104

    Article  Google Scholar 

  27. Huang W, Wang XL (2013) Biomimetic design of elastomer surface pattern for friction control under wet conditions, Bioinspir. Biomim 8:1–6. https://doi.org/10.1088/1748-3182/8/4/046001

    Article  Google Scholar 

  28. Zhang H, Zhang D, Hua M (2014) A study on the tribological behavior of surface texturing on babbitt alloy under mixed or starved lubrication. Tribol Lett 56:305–315. https://doi.org/10.1007/s11249-014-0410-4

    Article  Google Scholar 

  29. Etsion G, Halperin T (2002) A laser surface textured hydrostatic mechanical seal. Tribol Trans 45:430–434. https://doi.org/10.1080/10402000208982570

    Article  Google Scholar 

  30. Zhang H, HUA M, Dong GN, Zhang DY, Chin KS (2015) A mixed lubrication model for studying tribological behaviors of surface texturing. Tribol Int 93:583–592. https://doi.org/10.1016/j.triboint.2015.03.027

    Article  Google Scholar 

  31. Tang W, Zhou Y, Hu H, Yang HF (2013) The effect of surface texturing on reducing the friction and wear of steel under lubricated sliding contact. Appl Surf Sci 273:199–204. https://doi.org/10.1016/j.apsusc.2013.02.013

    Article  Google Scholar 

  32. Hu CY, Wan XL, Wu KM, Xu DM, Li GQ, Xu G, Misra RDK (2020) On the impacts of grain refinement and strain-induced deformation on three-body abrasive wear responses of 18Cr–8Ni austenitic stainless steel. Wear 446-447:203181. https://doi.org/10.1016/j.wear.2019.203181

    Article  Google Scholar 

  33. Yilbas BS, Khaled M, Abu-Dheir N, Furquan SZ (2013) Laser texturing of alumina surface for improved hydrophobicity. Appl Surf Sci 286:161–170. https://doi.org/10.1016/j.apsusc.2013.09.040

    Article  Google Scholar 

  34. Yang X, Peng XD, Meng XK, Jiang JB, Wang YM (2019) Thermo-elasto-hydrodynamic analysis of triangular textured mechanical face seals. J Zhejiang Univ Sci A 20:864–881. https://doi.org/10.1631/jzus.A1900163

    Article  Google Scholar 

  35. Wang T, Huang WF, Liu XF, Li YJ, Wang YM (2014) Experimental study of two-phase mechanical face seals with laser surface texturing. Tribol Int 72:90–97. https://doi.org/10.1016/j.triboint.2013.12.009

    Article  Google Scholar 

  36. Meng XK, Bai SX, Peng XD (2014) Lubrication film flow control by oriented dimples for liquid lubricated mechanical seals. Tribol Int 77:132–141. https://doi.org/10.1016/j.triboint.2014.04.020

    Article  Google Scholar 

  37. Chen WJ, Meng XK, Wang YM, Liang YY, Peng XD (2019) Finite element model and tribological properties analysis of textured mechanical seals considering roughness effect. Tribology 39:523–531. https://doi.org/10.16078/j.tribology.2019004

    Article  Google Scholar 

  38. Yin BF, Lu ZT, Liu SJ, Fu YH, Wang Y (2012) Theoretical and experimental research on lubrication performance of laser surface texturing cylinder liner. J Mech Eng 48:91–96. https://doi.org/10.3901/JME.2012.21.091

    Article  Google Scholar 

  39. Hu LH, Mo JL, Wang DW, Yang JZ, Chen GX, Zhu MH (2016) Groove-textured and pit-textured surfaces to suppress friction-induced squeal noise. China Mechan Eng 27:1158–1164. https://doi.org/10.3969/j.issn.1004-132X.2016.09.004

    Article  Google Scholar 

  40. Wang DW, Mo JL, Wang ZG, Wang XC, Chen GX, Zhu MH (2013) Mechanism of the effect of groove-textured surface on the friction vibration and noise. J Mech Eng 49:112–116. https://doi.org/10.3901/JME.2013.23.112

    Article  Google Scholar 

  41. Niu YX, Pang XJ, Li YJ, Shangguan B, Zhang YZ (2019) Effects of sliding speed and load levels on tribological properties of dimple-textured surfaces under starved lubrication. China Surf Eng 32:140–149. https://doi.org/10.11933/j.issn.1007-9289.20190506001

    Article  Google Scholar 

  42. Liu GS, Sun J, Li B, Zhu SY (2019) Lubrication analysis of oil-control-ring and cylinder liner frictional pair considering oil feeding condition. J Mech Eng 55:102–109. https://doi.org/10.3901/JME.2019.07.102

    Article  Google Scholar 

  43. Li JL, Chen P, Shao TM, Xiang X (2016) The effect of gourd-shaped surface texture on tribological performance of stainless steel. Tribology 36:207–214. https://doi.org/10.16078/j.tribology.2016.02.010

    Article  Google Scholar 

  44. Zeng SS, Li JB, Chen PF, Cui YG (2019) Effect of stator surface texture on the performances of an ultrasonic motor. Tribology 39:504–510. https://doi.org/10.16078/j.tribology.2019015

    Article  Google Scholar 

  45. Wu YB, Yang XF, Wang SR, Cheng J, Zhang H, Lu CY, Chen HL (2019) Tribological properties of V-shaped surface texture under oil lubrication condition. J Northwest Polytech Univ 37:401–406. https://doi.org/10.1051/jnwpu/20193720401

    Article  Google Scholar 

  46. Xie Y, Song WT, Chen WG, Liu DC, Chen L (2020) Effect of triangular surface micro-texture on tribological properties of 304 steel. Surf Technol. https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.04.022

  47. Yin MH, Chen GD, Gao DC, Wang L (2016) Effects of three types of surface texture on the performances of journal bearing. J Harbin Instit Technol 48:159–164. https://doi.org/10.11918/j.issn.0367-6234.2016.01.024

    Article  Google Scholar 

  48. Han J, Fang L, Sun JP, Wang YQ, Ge SR, Zhu H (2011) Hydrodynamic lubrication of surfaces with asymmetric microdimple. Tribol Trans 54:607–615. https://doi.org/10.1080/10402004.2011.584364

    Article  Google Scholar 

  49. Mao Y, Zeng LC, Lu Y (2016) Modeling and optimization of cavitation on a textured cylinder surface coupled with the wedge effect. Tribol Int 104:212–224. https://doi.org/10.1016/j.triboint.2016.09.002

    Article  Google Scholar 

  50. Zhang Y, Chen GD, Wang L, Ge YP (2017) Analysis of bearing load-carrying capacity with asymmetric surface textures under coupling effects of cavitation and inertia effect. J Northwest Polytech Univ 35:1026–1032

    Google Scholar 

  51. Shen C, Khonsari MM (2015) Numerical optimization of texture shape for parallel surfaces under unidirectional and bidirectional sliding. Tribol Int 82:1–11. https://doi.org/10.1016/j.triboint.2014.09.022

    Article  Google Scholar 

  52. Zhou HY, Shi XL, Yang ZY, Wu CH, Lu GC, Xue YW (2020) Tribological property and frictional noise performance of titanium alloys with Sn-Ag-Cu and TiC filled into surface dimples. Tribol Int 144:106121. https://doi.org/10.1016/j.triboint.2019.106121

    Article  Google Scholar 

  53. Hou QM, Yang XF, Cheng J, Wang SR, Duan DR, Xiao JP, Li WY (2020) Optimization of performance parameters and mechanism of bionic texture on friction surface. Coatings 171:1–18. https://doi.org/10.3390/coatings10020171

    Article  Google Scholar 

  54. Pettersson U, Jacobson S (2003) Influence of surface texture on boundary lubricated sliding contacts. J Tribol 36:857–864. https://doi.org/10.1016/S0301-679X(03)00104-X

    Article  Google Scholar 

  55. Wu Z, Deng JX, Xing YQ, Cheng J, Zhao J (2012) Cutting performance of self-lubricating turning tools with elliptical micro-textures. Trans Chin Soc Agricult Mach 43(7):228–234. https://doi.org/10.6041/j.issn.1000-1298.2012.07.042

    Article  Google Scholar 

  56. Yu HW, Huang W, Wang XL (2011) Dimple patterns design for different circumstances. Lubr Sci 25:67–78. https://doi.org/10.1002/ls.168

    Article  Google Scholar 

  57. Yang ZJ, Han ZW, Ren LQ (2005) Friction and wear behavior of bionic non-smooth surfaces at high temperature. Tribology 25:374–378. https://doi.org/10.16078/j.tribology.2005.04.018

    Article  Google Scholar 

  58. Kawasegi N, Sugimori H, Morimoto H, Morita N, Hori I (2009) Development of cutting tools with microscale and nanoscale textures to improve frictional behavior. Precis Eng 33:248–254. https://doi.org/10.1016/j.precisioneng.2008.07.005

    Article  Google Scholar 

  59. Ma GL, Jiang L, Huang W, Wang XL (2010) Lubrication properties of textured polydimethylsiloxane surfaces with different roughness. J Xi ' an Jiaotong Univ 44:87–92 CNKI:SUN:XAJT.0.2010-09-019

    Google Scholar 

  60. Li D, Yang XF, Lu CY, Cheng J, Wang SR, Wang YJ (2020) Tribological characteristics of a cemented carbide friction surface with chevron pattern micro-texture based on different texture density. Tribol Int 142:106016. https://doi.org/10.1016/j.triboint.2019.106016

    Article  Google Scholar 

  61. Arslan A, Masjuki HH, Varman M, Kalam MA, Quazi MM, Al Mahmud KAH (2015) Effects of texture diameter and depth on the tribological performance of DLC coating under lubricated sliding condition. Appl Surf Sci 365:1135–1149. https://doi.org/10.1016/j.apsusc.2015.08.194

    Article  Google Scholar 

  62. Xu YF, Zheng Q, Abuflaha R, Dustin O, Furlong O, You T, Zhang QQ, Hu XG, Tysoe WT (2019) Influence of dimple shape on tribofilm formation and tribological properties of textured surfaces under full and starved lubrication. Tribol Int 136:267–275. https://doi.org/10.1016/j.triboint.2019.03.047

    Article  Google Scholar 

  63. Su FH, Mao C, Li ZJ (2019) Experiment and simulation study on the effect of texture depth on tribological properties of stainless steel surface under oil lubricating condition. Tribology 32:181–187. https://doi.org/10.16078/j.tribology.2018143

    Article  Google Scholar 

  64. Ji JH, Fu YH, Hua XJ, Fu H, Kang ZY (2014) Tribological properties of 45 steel surface with V-Grooves. China Surf Eng 27:107–111. https://doi.org/10.3969/j.issn.1007-9289.2014.04.017

    Article  Google Scholar 

  65. Ji JH, Zhou JP, Wang MY, Wang W, Fu YH (2019) Effect of initial roughness on the tribological properties of textured surfaces with micro-grooves. Surf Technol 48:139–143. https://doi.org/10.16490/j.cnki.issn.1001-3660.2019.02.020

    Article  Google Scholar 

  66. Lu CY, Yang XF, Wang SR, Wang YJ, Wu YB, Chen HL (2018) Dynamic pressure lubrication and anti-friction characteristics of the cemented carbide with triangular grooved microtexture. Tribology 38:537–546. https://doi.org/10.16078/j.tribology.2018.05.006

    Article  Google Scholar 

  67. He X, Zhong L, Wang GR, Yang CH, Jiang L (2014) Tribological properties of fracturing seal with textured plunger. Tribology 34:364–370. https://doi.org/10.16078/j.tribology.2014.04.004

    Article  Google Scholar 

  68. Shen ZH, Wang FC, Chen ZG, Ruan XP, Zeng HH, Wang JH, An YR, Fan XL (2021) Numerical simulation of lubrication performance on chevron textured surface under hydrodynamic lubrication. Tribol Int 154:106704. https://doi.org/10.1016/j.triboint.2020.106704

    Article  Google Scholar 

  69. Wang HT, Li Y, Zhu H (2016) Effect of geometry parameters and patterns on tribological properties of textured surface with elliptical dimples. Tribology 36:77–83. https://doi.org/10.16078/j.tribology.2016.01.012

    Article  Google Scholar 

  70. Liu HB, Meng YG (2007) Hydrodynamic lubrication analysis of textured surfaces with the domain decomposition method-effect of texture distribution patterns. Tribology 27:555–561. https://doi.org/10.16078/j.tribology.2007.06.005

    Article  Google Scholar 

  71. Miao CW, Guo ZW, Yuan CQ (2019) Effects of bionic multi-scales groove textures on surface tribological properties. China Surf Eng 32:22–30. https://doi.org/10.11933/j.issn.1007-9289.20181010001

    Article  Google Scholar 

  72. Niu YX, Pang XJ, Yue SW, Shangguan B, Zhang YZ (2021) The friction and wear behavior of laser textured surfaces in non-conformal contact under starved lubrication. Wear.:203723. https://doi.org/10.1016/j.wear.2021.203723

  73. Dhadda G, Hamed M, Koshy P (2021) Electrical discharge surface texturing for enhanced pool boiling heat transfer. J Mater Process Technol 293:117083. https://doi.org/10.1016/j.jmatprotec.2021.117083

    Article  Google Scholar 

  74. Walbrühl M, Linder D, Ågren J, Borgenstam A (2018) Alternative Ni-based cemented carbide binder -hardness characterization by nano-indentation and focused ion beam. Int J Refract Met Hard Mater 73:204–209. https://doi.org/10.1016/j.ijrmhm.2018.02.017

    Article  Google Scholar 

  75. Zhao WJ, Wang LP, Xue QJ (2001) Development and research progress of surface texturing on improving tribological performance of surface. Tribology 31:622–631. https://doi.org/10.16078/j.tribology.2011.06.016

    Article  Google Scholar 

  76. Kumar V, Verma R, Kango S, Sharma VS (2021) Recent progresses and applications in laser-based surface texturing systems. Mater Today Commun 26:101736. https://doi.org/10.1016/j.mtcomm.2020.101736

    Article  Google Scholar 

  77. Zanet AD, Casalegno V, Salvo M (2020) Laser surface texturing of ceramics and ceramic composite materials –a review. Ceram Int 47:7307–7320. https://doi.org/10.1016/j.ceramint.2020.11.146

    Article  Google Scholar 

  78. Braun D, Greiner C, Schneider J, Gumbsch P (2014) Efficiency of laser surface texturing in the reduction of friction under mixed lubrication. Tribol Int 77:142–147. https://doi.org/10.1016/j.triboint.2014.04.012

    Article  Google Scholar 

  79. Ming WY, Jia HJ, Zhang HM, Zhang Z, Liu K, Du JG, Shen F, Zhang GJ (2020) A comprehensive review of electric discharge machining of advanced ceramics. Ceram Int 46:21813–21838. https://doi.org/10.1016/j.ceramint.2020.05.207

    Article  Google Scholar 

  80. Koshy P, Tovey J (2011) Performance of electrical discharge textured cutting tools. CIRP Ann Manuf Technol 60:153–156. https://doi.org/10.1016/j.cirp.2011.03.104

    Article  Google Scholar 

  81. Yamaguchi K, Takada Y, Tsukuda Y, Ota M, Egashira K, Morita T (2016) Friction characteristics of textured surface created by electrical discharge machining under lubrication. Proc CIRP 42:662–667. https://doi.org/10.1016/j.procir.2016.02.298

    Article  Google Scholar 

  82. Jithin S, Raut A, Bhandarkar UV, Joshi SS (2020) Finite element model for topography prediction of electrical discharge textured surfaces considering multi-discharge phenomenon. Int J Mech Sci 177:105604. https://doi.org/10.1016/j.ijmecsci.2020.105604

    Article  Google Scholar 

  83. Laing ZQ, Li MZ, Chen BC, Zhou TF, Li SD, Yan P, Zhang SY, Wang XB (2020) Fabrication and cutting performance of micro-textured tools based on micro-grinding. Surf Technol 49:143–150. https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.02.017

    Article  Google Scholar 

  84. Chang WL, Sun JN, Luo XC, Ritchie JM, Mack C (2011) Investigation of microstructured milling tool for deferring tool wear. Wear 271:2433–2437. https://doi.org/10.1016/j.wear.2010.12.026

    Article  Google Scholar 

  85. Liu F, Guo XH, Han YJ, Wang CD, Liu TS, Dong BZ, Zhang KD (2020) Study on fabrication method of micro-textures on cemented carbide surface based on ion beam etching-assisted laser. Surf Technol 50(4):103–112. https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.04.010

    Article  Google Scholar 

  86. Han ZL, Wang JD, Chen DR (2007) The frication-reduce effect with different depth of concave on the oil-lack lubrication. Lubr Eng 32:18–20 CNKI:SUN:RHMF.0.2007-03-006

    Google Scholar 

  87. Pettersson U, Jacobson S (2004) Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding. Tribol Lett 17:553–559. https://doi.org/10.1023/B:TRIL.0000044504.76164.4e

    Article  Google Scholar 

  88. Qian SQ (2011) Fundamental research on electrochemical micromachining of surface texture and applications. Doctoral Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing

    Google Scholar 

  89. Mao B, Siddaiah A, Liao YL, Menezes PL (2020) Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: a review. J Manuf Process 53:153–173. https://doi.org/10.1016/j.jmapro.2020.02.009

    Article  Google Scholar 

  90. Jain A, Kumari N, Jagadevan S, Bajpai V (2020) Surface properties and bacterial behavior of micro conical dimple textured Ti6Al4V surface through micro-milling. Surf Interf 53:153–173. https://doi.org/10.1016/j.jmapro.2020.02.009

    Article  Google Scholar 

  91. Shen XH, Shi YL, Zhang JH, Zhang QJ, Tao GC, Bai LJ (2020) Effect of process parameters on micro-textured surface generation in feed direction vibration assisted milling. Int J Mech Sci 167:105267. https://doi.org/10.1016/j.ijmecsci.2019.105267

    Article  Google Scholar 

  92. Huang FQ, Jin XL (2021) Surface texture generation using high-feed milling with spindle speed modulation. Precis Eng 73:13–24. https://doi.org/10.1016/j.precisioneng.2021.04.005

    Article  Google Scholar 

  93. Cai CY, An QL, Ming WW, Chen M (2021) Modelling of machined surface topography and anisotropic texture direction considering stochastic tool grinding error and wear in peripheral milling. J Mater Process Technol 292:117065. https://doi.org/10.1016/j.jmatprotec.2021.117065

    Article  Google Scholar 

  94. Kang CW, Liang FS, Shen G, Wu DX, Fang FZ (2021) Study of micro-dimples fabricated on alumina-based ceramics using micro-abrasive jet machining. J Mater Process Technol 297:117181. https://doi.org/10.1016/j.jmatprotec.2021.117181

    Article  Google Scholar 

  95. Natarajana Y, Murugesanb PM, Mohanb M, Khan SALA (2020) Abrasive water jet machining process: a state of art of review. J Manuf Process 49:271–322. https://doi.org/10.1016/j.jmapro.2019.11.030

    Article  Google Scholar 

  96. Li HZ, Wang J, Kwok N, Nguyenc T, Yeoh GH (2018) A study of the micro-hole geometry evolution on glass by abrasive air-jet micromachining. J Manuf Process 31:156–161. https://doi.org/10.1016/j.jmapro.2017.11.013

    Article  Google Scholar 

  97. Wos S, Koszelo W, Pawlus P (2014) Tribological behaviours of textured surfaces under conformal and non-conformal starved lubricated contact conditions. J Eng Tribol 229:1–12. https://doi.org/10.1177/1350650114535759

    Article  Google Scholar 

  98. Wu Z, Bao H, Xing YQ, Liu L (2021) Tribological characteristics and advanced processing methods of textured surfaces: a review. Int J Adv Manuf Technol 114:1241–1277. https://doi.org/10.1007/s00170-021-06954-2

    Article  Google Scholar 

  99. Melentieva R, Fang FZ (2020) Fabrication of micro-channels on Co–Cr–Mo joints by micro-abrasive jet direct writing. J Manuf Process 56:667–677. https://doi.org/10.1016/j.jmapro.2020.05.022

    Article  Google Scholar 

  100. Pal VK, Choudhury SK (2015) Fabrication of texturing tool to produce array of square holes for EDM by abrasive water jet machining. Int J Adv Manuf Technol 85:2061–2071. https://doi.org/10.1007/s00170-015-7875-7

    Article  Google Scholar 

  101. Fang X, Yan ZJ, Wang JH, Shen ZY (2020) Effect of micro-convex texture on lubrication performance of friction pair considering cavitation phenomenon. Lubr Eng 45:32–41. https://doi.org/10.3969/j.issn.0254-0150.2020.12.006

    Article  Google Scholar 

  102. Li YN, Zhang Y, Feng TT, Lan HB, Peng ZL (2019) Simulation study on hydrodynamic lubrication performance of convex texture surface based on discharge deposition. Surf Technol 48:59–67. https://doi.org/10.16490/j.cnki.issn.1001-3660.2019.08.009

    Article  Google Scholar 

  103. Suh MS, Chae YH, Kim SS, Hinoki T, Kohyama A (2010) Effect of geometrical parameters in micro-grooved crosshatch pattern under lubricated sliding friction. Tribol Int 43:1508–1517. https://doi.org/10.1016/j.triboint.2010.02.012

    Article  Google Scholar 

  104. Yin BF, Qian YQ, Lu ZT, Wang BW, Sun S (2014) Theoretical and experimental study on lubrication performance of composite textures on cylinder liner. J Xi ' an Jiaotong Univ 48:74–81. https://doi.org/10.7652/xjtuxb201409013

    Article  Google Scholar 

  105. Segu DZ, Choi SG, Choi JH, Kim SS (2013) The effect of multi-scale laser textured surface on lubrication regime. Appl Surf Sci 270:58–63. https://doi.org/10.1016/j.apsusc.2012.12.068

    Article  Google Scholar 

  106. Wang GR, Liao WL, Zhao MJ (2019) Simulation analysis on hydrodynamic lubrication performance of fracturing pumper plunger seal with compound texture. Lubr Eng 44:20–30. https://doi.org/10.3969/j.issn.0254-0150.2019.01.004

    Article  Google Scholar 

  107. Meng FM, Zhang L, Liu Y, Li TT (2015) Effect of compound dimple on tribological performances of journal bearing. Tribol Int 91:99–110. https://doi.org/10.1016/j.triboint.2015.06.030

    Article  Google Scholar 

  108. Meng FM, Yu HY, Gui C, Chen L (2019) Experimental study of compound texture effect on acoustic performance for lubricated textured surfaces. Tribol Int 133:47–54. https://doi.org/10.1016/j.triboint.2018.12.036

    Article  Google Scholar 

  109. Wang JG, Chen SH (2014) Bionic design of Koch snowflake surface texture and its effects on air frictional noise of high speed train. J Mech Eng 2014(50):78–83. https://doi.org/10.3901/JME.2014.07.078

    Article  Google Scholar 

  110. Fu JG, Ma SL, Zhu XH, Ma CS, Xu CQ, Zhu JQ (2019) Influence of solid lubricant WS2 on the tribological properties of micro-arc oxidation ceramic coating of Al alloy. Surf Technol 48:150–157. https://doi.org/10.16490/j.cnki.issn.1001-3660.2019.07.016

    Article  Google Scholar 

  111. Mo CC, Li CS, Jin Y, Liao DH (2011) Preparation of TiWN/WS2 film by magnetron sputtering and it’s microstructure and tribological properties. Surf Technol 40:48–56. https://doi.org/10.16490/j.cnki.issn.1001-3660.2011.03.022

    Article  Google Scholar 

  112. Wang LJ, Yang JS (2010) The study on tribological properties of MoS2/TiN composite coating on the surface of titanium alloy. Surf Technol 39:11–13. https://doi.org/10.16490/j.cnki.issn.1001-3660.2010.02.020

    Article  Google Scholar 

  113. Hu TC, Hu LT, Zhang YS (2012) Preparation of composite lubrication structure and its tribological properties on 45# steel. Surface Tribol 32:14–20. https://doi.org/10.16078/j.tribology.2012.01.011

    Article  Google Scholar 

  114. Hu TC, Hu LT, Ding Q (2012) Effective solution for the tribological problems of Ti-6Al-4V: combination of laser surface texturing and solid lubricant film. Surf Coat Technol 206:5060–5066. https://doi.org/10.1016/j.surfcoat.2012.06.014

    Article  Google Scholar 

  115. Wang AY, Wang DW, Fan ZY, Wu YK, Xiang ZY, Mo JL (2019) Synergistic effect of surface groove and lubricant on friction-induced vibration and noise characteristics. Surf Technol 48:16–22. https://doi.org/10.16490/j.cnki.issn.1001-3660.2019.08.003

    Article  Google Scholar 

  116. Qiao JF, Chang QY (2016) Influence of surface texture on the tribological properties of molybdenum disulfide spraying film. Lubr Eng 41:55–58. https://doi.org/10.3969/j.issn.0254-0150.2016.01.010

    Article  Google Scholar 

  117. Cao L, Wan Y, Gao JG (2016) Tribological performance of MoS2 film on chemically textured surface of 45# steel. Surf Technol 45:83–88. https://doi.org/10.16490/j.cnki.issn.1001-3660.2016.10.013

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51872122) and the Postdoctoral Science Foundation of China (2017M620286)and the Key Research and Development Program of Shandong Province, China (2018CXGC0809) and Major Basic Research Projects of Shandong Natural Science Foundation (ZR2020ZD06) and Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program (2019KJB021) and Experts from Taishan Scholars and Youth Innovation in Science & Technology Support Plan of Shandong Province University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Yang, X., Zhang, Y. et al. Research progress of improving surface friction properties by surface texture technology. Int J Adv Manuf Technol 116, 2797–2821 (2021). https://doi.org/10.1007/s00170-021-07614-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07614-1

Keywords

Navigation