Skip to main content
Log in

Research and prospect of textured sliding bearing

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

A Correction to this article was published on 19 May 2022

This article has been updated

Abstract

The sliding bearing belongs to the supporting parts with high application rate in engineering, but in the operation process, it is inevitable to encounter large friction and wear due to the thin lubricating oil film and excessive applied load, which will seriously or even lead to failure. Surface texture is an effective method to solve this problem. At present, a large number of scholars have studied this. This paper summarizes the conventional texture shape and new shape design of surface texture of radial and thrust sliding bearings, and puts forward ideas for the extensive application of composite texture and bionic texture in sliding bearings. The arrangement position of texture in sliding bearing was summarized regularly, and the optimization problem of texture parameters on bearing surface was discussed, and the optimal parameters of partial texture were obtained. At the same time, the effects of different working conditions on texture performance and the synergistic effect of different types of lubricants on texture are summarized. The research on the synergistic technology of texture and surface technology for materials used in sliding bearings is briefly summarized. The application of this technology in sliding bearings needs further research. Finally, the above contents are summarized, and the existing problems of texture treatment on the surface of sliding bearings are put forward. Combined with the development of texture in many fields, the future development prospects of textured sliding bearings are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Availability of data and material

Transparent.

Change history

References

  1. Nascimento ARC, Chromik RR, Schulz R (2021) Mechanical properties and wear resistance of industrial bearing liners in concentrated boundary-lubricated sliding. Wear 477:203806. https://doi.org/10.1016/j.wear.2021.203806

    Article  Google Scholar 

  2. Furukawa K, Ochiai M, Hashimoto H, Kotani S (2020) Bearing characteristic of journal bearing applied biomimetics. Tribol Int 150:106345. https://doi.org/10.1016/j.triboint.2020.106345

    Article  Google Scholar 

  3. Maan JS, Awasthi RK (2021) Effect of texture location on performance characteristics of two-lobe hydrodynamic journal bearing under turbulent regime. Mater Today: Proc 47(16):5575–5583. https://doi.org/10.1016/matpr.2021.03.458

  4. Bhasker B, Seetharamaiah N, Babu PR (2020) Experimental investigation of hydrodynamic pressure and oil film temperature of surface textured offset halves journal bearing. Mater Today: Proc (Prepublish). https://doi.org/10.1016/j.matpr.2020.10.558

  5. Ravindra KG, Rudresh BM, Prasanna KMK, Praveen K (2021) Optimization of design parameters to evaluate the performance of journal bearing: ANN approach. Mater Today: Proc 54(2):171–178. https://doi.org/10.1016/j.matpr.2021.08.205

    Article  Google Scholar 

  6. Kumar PS, Ramanuj K, Chandra MP (2020) Material modeling and optimization of rough elliptic bore journal bearing. Mater Today: Proc 44(1):1021–1027. https://doi.org/10.1016/j.matpr.2020.11.174

    Article  Google Scholar 

  7. Xu HF, Jiang YH, Xu AH (2021) Application research of fault diagnosis for sliding bearings of the electric pump based on vibration signal. Control Instruments Chem Ind 48(05):481–485

    Google Scholar 

  8. Zhao WJ, Wang LP, Xue QJ (2011) Development and research progress of surface texturing on improving tribological performance of surface. Tribology 31(06):622–631. https://doi.org/10.16078/j.tribology.2011.06.016

  9. Ding N, Li HL, Yin ZW, Jiang FM (2021) A novel method for journal bearing degradation evaluation and remaining useful life prediction under different working conditions. Measurement 177:109273. https://doi.org/10.1016/j.measurement.2021.109273

    Article  Google Scholar 

  10. Wu Z, Bao H, Xing YQ, Liu L (2021) Tribological characteristics and advanced processing methods of textured surfaces: a review. Int J Adv Manuf Technol 114:1241–1277. https://doi.org/10.1007/S00170-021-06954-2

    Article  Google Scholar 

  11. Zhang H, Zhang DY, Hua M, Chin KS (2014) A study on the tribological behavior of surface texturing on Babbitt alloy under mixed or starved lubrication. Tribol Lett 56(2):305–315. https://doi.org/10.1007/s11249-014-0410-4

    Article  Google Scholar 

  12. Papadopoulos CI, Efstathiou EE, Kaiktsis L, Nikolakopoulos PG (2011) Geometry optimization of textured three-dimensional micro-thrust bearings. J Tribol 133(4):041702. https://doi.org/10.1115/1.4004990

    Article  Google Scholar 

  13. Zhang H, Hua M, Dong GN, Zhang DY, Kwai-Sang Chin (2016) A mixed lubrication model for studying tribological behaviors of surface texturing. Tribol Int 93(Pt. B):583–592. https://doi.org/10.1016/j.triboint.2015.03.027

  14. Tang W, Zhou YK, Zhu H, Yang HF (2013) The effect of surface texturing on reducing the friction and wear of steel under lubricated sliding contact. Appl Surf Sci 273:199–204. https://doi.org/10.1016/j.apsusc.2013.02.013

    Article  Google Scholar 

  15. Mao YZ, Yang JX, Xu WJ, Jin LJ (2020) Effects of surface texture on tribological properties of hydrodynamic journal bearing. China Surf Eng 33(06):47–57. https://doi.org/10.11933/j.issn.1007-9289.20200905001

  16. Sinanoglu C, Nair F, Karamis MB (2005) Effects of shaft surface texture on journal bearing pressure distribution. J Mater Process Technol 168(2):344–353. https://doi.org/10.1016/j.jmatprotec.2005.02.252

    Article  Google Scholar 

  17. Sinanoglu C (2005) The analysis of the effects of surface texture on the capability of load carriage of journal bearings using neural network. Ind Lubr Tribol 57(1):28–40. https://doi.org/10.1108/00368790510575969

    Article  Google Scholar 

  18. Tala-Ighil N, Maspeyrot P, Fillon M, Bounif A (2007) Effects of surface texture on journal-bearing characteristics under steady-state operating conditions. Proc Inst Mech Eng Part J: J Eng Tribol 221(06):623–633. https://doi.org/10.1243/13506501JET287

    Article  Google Scholar 

  19. Tala-Ighil N, Fillon M, Maspeyrot P (2010) Effect of textured area on the performances of a hydrodynamic journal bearing. Tribol Int 44(3):211–219. https://doi.org/10.1016/j.triboint.2010.10.003

    Article  Google Scholar 

  20. Buscaglia GC, Ausas RF, Jai M (2006) Optimization tools in the analysis of micro-textured lubricated devices. Inverse Prob Sci Eng 14(4):365–378. https://doi.org/10.1080/17415970600573452

    Article  MATH  Google Scholar 

  21. Nikam MD, Shimpi D, Bhole K, Mastud SA (2019) Design and development of surface texture for tribological application. Key Eng Mater 4834:55–59. https://doi.org/10.4028/www.scientific.net/KEM.803.55

    Article  Google Scholar 

  22. Syed I, Sarangi M (2018) Combined effects of fluid-solid interfacial slip and fluid inertia on the hydrodynamic performance of square shape textured parallel sliding contacts. J Braz Soc Mech Sci Eng 40(6)

  23. Zhang Y, Zeng LC, Chen J, Chen KY (2018) Mechanism of synergism on surface of circular micro-textures. Chin Hydraul Pneumat (09):70–73. https://doi.org/10.11832/j.issn.1000-4858.2018.09.012

  24. Wang HT, Zhu H (2015) Tribology properties of textured surface with ring-shape pits. Lubr Eng 40(01):49–53. https://doi.org/10.3969/j.issn.0254-0150.2015.01.011

    Article  Google Scholar 

  25. Chen P, Li JL, Li YL (2018) Effect of geometric micro-groove texture patterns on tribological performance of stainless steel. J Central South Univ 25(2):331–341. https://doi.org/10.1007/s11771-018-3740-9

    Article  Google Scholar 

  26. Siripuram RB, Stephens LS (2004) Effect of deterministic asperity geometry on hydrodynamic lubrication. J Tribol 126(3):527–534. https://doi.org/10.1115/1.1715104

    Article  Google Scholar 

  27. Bai SX, Peng XD, Li JY, Meng XK (2011) Experimental study on hydrodynamic effect of orientation micro-pored surfaces. Sci China Technol Sci 54(3):659–662. https://doi.org/10.1007/s11431-010-4265-0

    Article  MATH  Google Scholar 

  28. Yang LJ, Ding Y, Cheng B, Wang Y (2018) Investigations on femtosecond laser modified micro-textured surface with anti-friction property on bearing steel GCr15. Appl Surf Sci 434:831–842. https://doi.org/10.1016/j.apsusc.2017.10.234

    Article  Google Scholar 

  29. Rahmani R, Mirzaee I, Shirvani A, Shirvani H (2010) An analytical approach for analysis and optimisation of slider bearings with infinite width parallel textures. Tribol Int 43(8):1551–1565. https://doi.org/10.1016/j.triboint.2010.02.016

    Article  Google Scholar 

  30. Manser B, Belaidi I, Hamrani A, Bakir F (2018) Performance of hydrodynamic journal bearing under the combined influence of textured surface and journal misalignment: a numerical survey. Comptes rendus-Mecanique 347(2):141–165. https://doi.org/10.1016/j.crme.2018.11.002

    Article  Google Scholar 

  31. Shinde A, Pawar P, Gaikwad S, Parkhe A (2018) Numerical analysis of deterministic micro-textures on the performance of hydrodynamic journal bearing. Mater Today: Proc 5(2):5999–6008. https://doi.org/10.1016/j.matpr.2017.12.203

    Article  Google Scholar 

  32. Lampaert SGE, Quinci F, Ostayen RAJV (2019) Rheological texture in a journal bearing with magnetorheological fluids. J Magn Magn Mater 499(C):166218. https://doi.org/10.1016/j.jmmm.2019.166218

  33. Filgueira ICM, Bottene AC, Silva EJ, Nicoletti R (2021) Static behavior of plain journal bearings with textured journal-experimental analysis. Tribol Int 159:106970. https://doi.org/10.1016/j.triboint.2021.106970

    Article  Google Scholar 

  34. Shinde A, Pawar P, Shaikh P, Dhamgaye V (2018) Experimental and numerical analysis of conical shape hydrodynamic journal bearing with partial texturing. Proc Manuf 20:300–310. https://doi.org/10.1016/j.promfg.2018.02.045

    Article  Google Scholar 

  35. Wang J, Zhang JH, Ma L (2018) Performance study of sliding bearings with elliptical paraboloid textured. Lubr Eng 43(5):7. https://doi.org/10.3969/j.issn.0254-0150.2018.05.008

    Article  Google Scholar 

  36. Su H, Yu ZX (2017) Computational fluid dynamics analysis of a journal bearing with groove-texture composite structure. Lubr Eng 42(7):7. https://doi.org/10.3969/j.issn.0254-0150.2017.07.004

    Article  Google Scholar 

  37. Chen TY, Ji JH, Fu YH, Yang XP, Fu H, Fang LN (2021) Tribological performance of UV picosecond laser multi-scale composite textures for C/SiC mechanical seals: Theoretical analysis and experimental verification. Ceram Int 47(16):23162–23180. https://doi.org/10.1016/j.ceramint.2021.04.312

    Article  Google Scholar 

  38. Yin B, Qian Y, Lu Z, Wang B, Sun S (2014) Theoretical and experimental study on lubrication performance of composite textures on cylinder liners. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi’an Jiaotong University 48(9):74–80 and 135. https://doi.org/10.7652/xjtuxb201409013

  39. Segu DZ, Choi SG, Choi JH, Kim SS (2013) The effect of multi-scale laser textured surface on lubrication regime. Appl Surf Sci 270(1):58–63. https://doi.org/10.1016/j.apsusc.2012.12.068

    Article  Google Scholar 

  40. Zhang WG, Liu S, Li K, Meng L (2018) High strain-rate behavior and deformation mechanism of a multi-layer composite textured AZ31B Mg alloy plate. J Alloy Compd 749:23–39. https://doi.org/10.1016/j.jallcom.2018.03.258

    Article  Google Scholar 

  41. Meng FM, Zhang L, Liu Y, Li TT (2015) Effect of compound dimple on tribological performances of journal bearing. Tribol Int 91:99–110. https://doi.org/10.1016/j.triboint.2015.06.030

    Article  Google Scholar 

  42. Hou QM, Yang XF, Cheng J, Li WY (2020) Optimization of performance parameters and mechanism of bionic texture on friction surface. Coatings 10(2):171. https://doi.org/10.3390/coatings10020171

    Article  Google Scholar 

  43. Martin S, Bhushan B (2016) Modeling and optimization of shark-inspired riblet geometries for low drag applications. J Colloid Interface Sci 474:206–215. https://doi.org/10.1016/j.jcis.2016.04.019

    Article  Google Scholar 

  44. Cheng XF, Ru SF, Sun YW, Cong Q (2017) Wear performance of bionic strip-shaped mud pump pistons. Proc Inst Mech Eng C J Mech Eng Sci 231(21):4076–4084. https://doi.org/10.1177/0954406216659679

    Article  Google Scholar 

  45. Wang LX, Huang FS, Zhou Q (2015) Surface structure biomimetic design and performance testing of slippery trapping plate used for controlling agricultural insect. Trans Chinese Soc Agric Eng 31(20):34–40. https://doi.org/10.11975/j.issn.1002-6819.2015.20.005

  46. Chang T, Guo ZW, Yuan CQ (2019) Study on influence of Koch snowflake surface texture on tribological performance for marine water-lubricated bearings. Tribol Int 129:29–37. https://doi.org/10.1016/j.triboint.2018.08.015

    Article  Google Scholar 

  47. Jiang HL, Jin J, Wang XJ (2022) Analysis of static characteristics of sharkskin textured journal bearing in mixed flow. Bearing. http://kns.cnki.net/kcms/detail/41.1148.TH.20220126.1456.002.html. Accessed 24 Feb 2022

  48. Wang LX, Wu SJ, Li SS (2018) Research progress and development prospect of Nepenthes pitcher in engineering bionics field. J Hebei Univ Sci Technol 39(03):221–231. https://doi.org/10.7535/hbkd.2018yx03005

    Article  Google Scholar 

  49. Zhao YF, Yang JX, Mao YZ, Wang WT, Zhao YF (2020) Effect of texture arrangement on friction and wear characteristics of sliding bearings. Bearing (09):33–37. https://doi.org/10.19533/j.issn1000-3762.2020.09.008

  50. Yin SM, Zhao SX (2019) Effects of surface texture on static characteristics of radial journal bearings. Bearing (3):42–47. https://doi.org/10.19533/j.issn1000-3762.2019.03.009

  51. Tala-Ighil N, Fillon M (2015) A numerical investigation of both thermal and texturing surface effects on the journal bearings static characteristics. Tribol Int 90:228–239. https://doi.org/10.1016/j.triboint.2015.02.032

    Article  Google Scholar 

  52. Kango S, Singh D, Sharma RK (2012) Numerical investigation on the influence of surface texture on the performance of hydrodynamic journal bearing. Meccanica 47(2):469–482. https://doi.org/10.1007/s11012-011-9460-y

    Article  MATH  Google Scholar 

  53. Tomar AK, Sharma SC (2020) An investigation into surface texture effect on hole-entry hybrid spherical journal bearing performance. Tribol Int 151:106417. https://doi.org/10.1016/j.triboint.2020.106417

    Article  Google Scholar 

  54. Dong TJ, Li JQ, Yang F, He ZP, Zhao YY, Zhang C (2022) Numerical analysis of groove texture for misaligned journal bearing. Lubr Eng. http://kns.cnki.net/kcms/detail/44.1260.TH.20210920.0902.008.html. Accessed 1 Apr 2022

  55. Mao YZ, Yang JX, Xu WJ, Li QL, Liu YG (2019) Analytical model of oil film force of surface textured hydrodynamic journal bearings. Lubric Eng 44(04):46–54 and 113. https://doi.org/10.3969/j.issn.0254-0150.2019.04.008

  56. Mao YZ, Yang JX, Liu YG (2018) Analysis of influence of oil film pressure distribution of textured hydrodynamic sliding bearing. Lubr Eng 43(06):55–60 and 71. https://doi.org/10.3969/j.issn.0254-0150.2018.06.010

  57. Lin QY, Bao QK, Li KJ, Zhao H (2018) An investigation into the transient behavior of journal bearing with surface texture based on fluid-structure interaction approach. Tribol Int 118:246–255. https://doi.org/10.1016/j.triboint.2017.09.026

    Article  Google Scholar 

  58. Wang LL, Guo SH, Yin GX, Wei YL, Yuan GT (2018) Research on micro-textured journal bearing characteristics considering the effect of cavitation. Lubr Eng 43(05):65–69. https://doi.org/10.3969/j.issn.0254-0150.2018.05.011

    Article  Google Scholar 

  59. Chen KY, Yang XF, Zhang YF, Yang H, Lv GJ, Gao YL (2021) Research progress of improving surface friction properties by surface texture technology. Int J Adv Manuf Technol 116(9–10):25. https://doi.org/10.1007/S00170-021-07614-1

    Article  Google Scholar 

  60. Yang ZJ, Han ZW, Ren LQ (2005) Friction and wear behavior of bionic non-smooth surfaces at high temperature. Tribology 25(04):374–378. https://doi.org/10.16078/j.tribology.2005.04.018

  61. Kawasegi N, Sugimori H, Morimoto H, Hori I (2008) Development of cutting tools with microscale and nanoscale textures to improve frictional behavior. Precis Eng 33(3):248–254. https://doi.org/10.1016/j.precisioneng.2008.07.005

    Article  Google Scholar 

  62. Ma GL, Jiang L, Huang W, Wang XL (2010) Lubrication properties of textured polydimethylsiloxane surfaces with different roughness. J Xi’an Jiaotong Univ 44(09):87–92

    Google Scholar 

  63. Lu XB, Khonsari MM (2007) An experimental investigation of dimple effect on the stribeck curve of journal bearings. Tribol Lett 27(2):169–176. https://doi.org/10.1007/s11249-007-9217-x

    Article  Google Scholar 

  64. Wang LL, Guo SH, Yin GX (2016) Research on lubrication performance of micro-textured journal bearing based on fluent. Proceedings of Joint 2016 International Conference on Artificial Intelligence and Engineering Applications (AIEA 2016), p 224–228

  65. Singh D, Singh N, Awasthi RK (2018) Effect of surface texture parameters on the performance of finite slider bearing. Mater Today: Proc 5(9):19349–19358. https://doi.org/10.1016/j.matpr.2018.06.294

    Article  Google Scholar 

  66. Singh MJ, Awasthi RK (2021) Effect of texture location on performance characteristics of two-lobe hydrodynamic journal bearing under turbulent regime. Mater Today: Proc 47(16):5575–5583. https://doi.org/10.1016/j.matpr.2021.03.458

    Article  Google Scholar 

  67. Zhao YF, Yang JX, Ma XZ, Tie XY (2019) Influences of texture parameters of spherical pits on load capacity of hydrodynamic sliding bearings. Bearing (05):30–34. https://doi.org/10.19533/j.issn1000-3762.2019.05.009

  68. Su BB, Huang LR, Huang W, Wang XL (2017) The load carrying capacity of textured sliding bearings with elastic deformation. Tribol Int 109:86–96. https://doi.org/10.1016/j.triboint.2016.11.030

    Article  Google Scholar 

  69. Yu YH, Yang SB, Cao ML, Shen JX, Ruan WX (2022) Research on elliptic bias parabolic micro-texture of sliding bearing surface. Surf Technol. http://kns.cnki.net/kcms/detail/50.1083.TG.20220110.1408.029.html. Accessed 29 Mar 2022

  70. Shinde AB, Pawar PM (2017) Multi-objective optimization of surface textured journal bearing by Taguchi based Grey relational analysis. Tribol Int 114:349–357. https://doi.org/10.1016/j.triboint.2017.04.041

    Article  Google Scholar 

  71. Wang XL, Zhu KQ (2006) Numerical analysis of journal bearings lubricated with micropolar fluids including thermal and cavitating effects. Tribol Int 39:227–237. https://doi.org/10.1016/j.triboint.2005.01.028

    Article  Google Scholar 

  72. Safar ZS (1979) Dynamically loaded bearings operating with non-Newtonian lubricant films. Wear 55(2):295–304. https://doi.org/10.1016/0043-1648(79)90161-3

    Article  Google Scholar 

  73. Wang XL, Zhu KQ, Wen SZ (2001) Thermohydrodynamic analysis of journal bearings lubricated with couple stress fluids. Tribol Int 34(5):335–343. https://doi.org/10.1016/S0301-679X(01)00022-6

    Article  Google Scholar 

  74. Dang RK, Goyal D, Chauhan A, Dhami SS (2020) Effect of non-Newtonian lubricants on static and dynamic characteristics of journal bearings. Mater Today: Proc 28(3):1345–1349. https://doi.org/10.1016/j.matpr.2020.04.727

    Article  Google Scholar 

  75. Quinci F, Litwin W, Wodtke M, van Den Nieuwendijk R (2021) A comparative performance assessment of a hydrodynamic journal bearing lubricated with oil and magnetorheological fluid. Tribol Int 162:107143. https://doi.org/10.1016/j.triboint.2021.107143

    Article  Google Scholar 

  76. Bompos DA, Nikolakopoulos PG (2011) CFD simulation of magnetorheological fluid journal bearings. Simul Model Pract Theory 19(4):1035–1060. https://doi.org/10.1016/j.simpat.2011.01.001

    Article  Google Scholar 

  77. Khatri CB, Sharma SC (2018) Analysis of textured multi-lobe non-recessed hybrid journal bearings with various restrictors. Int J Mech Sci 145:258–286. https://doi.org/10.1016/j.ijmecsci.2018.07.014

    Article  Google Scholar 

  78. Kumar A, Sharma SC (2019) Textured conical hybrid journal bearing with ER lubricant behavior. Tribol Int 129:363–376. https://doi.org/10.1016/j.triboint.2018.08.040

    Article  Google Scholar 

  79. Khatri CB, Sharma SC (2016) Influence of textured surface on the performance of non-recessed hybrid journal bearing operating with non-Newtonian lubricant. Tribol Int 95:221–235. https://doi.org/10.1016/j.triboint.2015.11.017

    Article  Google Scholar 

  80. Galda L, Sep J, Olszewski A, Zochowski T (2019) Experimental investigation into surface texture effect on journal bearings performance. Tribol Int 136:372–384. https://doi.org/10.1016/j.triboint.2019.03.073

    Article  Google Scholar 

  81. Jin LJ, Yang JX, Li CG (2020) Numerical coupled model of mixed lubrication wear for textured journal bearing. Lubr Eng 45(10):67–74. https://doi.org/10.3969/j.issn.0254-0150.2020.10.011

    Article  Google Scholar 

  82. Marian VG, Gabriel D, Knoll G, Filippone S (2011) Theoretical and experimental analysis of a laser textured thrust bearing. Tribol Lett 44(3):335–343. https://doi.org/10.1007/s11249-011-9857-8

    Article  Google Scholar 

  83. Gropper D, Harvey TJ, Wang L (2018) A numerical model for design and optimization of surface textures for tilting pad thrust bearings. Tribol Int 119:190–207. https://doi.org/10.1016/j.triboint.2017.10.024

    Article  Google Scholar 

  84. Gherca A, Fatu A, Hajjam M, Maspeyrot P (2016) Influence of surface texturing on the hydrodynamic performance of a thrust bearing operating in steady-state and transient lubrication regime. Tribol Int 102:305–318. https://doi.org/10.1016/j.triboint.2016.05.041

    Article  Google Scholar 

  85. Zouzoulas V, Papadopoulos CI (2016) 3-D thermohydrodynamic analysis of textured, grooved, pocketed and hydrophobic pivoted-pad thrust bearings. Tribol Int 110:426–440. https://doi.org/10.1016/j.triboint.2016.10.001

    Article  Google Scholar 

  86. Atwal JC, Pandey RK (2021) Performance improvement of water-lubricated thrust pad bearing operating with the turbulent flow using a new micro-pocket design. Tribol Int 154:106738. https://doi.org/10.1016/j.triboint.2020.106738

    Article  Google Scholar 

  87. Wang W, He YY, Zhao J, Luo JB (2017) Numerical optimization of the groove texture bottom profile for thrust bearings. Tribol Int 109:69–77. https://doi.org/10.1016/j.triboint.2016.12.006

    Article  Google Scholar 

  88. Ren N (2009) Advanced modeling of mixed lubrication and its mechanical and biomedical applications. Diss Theses-Gradworks

  89. Tang HS, Ren Y, Kumar A (2021) Optimization tool based on multi-objective adaptive surrogate modeling for surface texture design of slipper bearing in axial piston pump. Alex Eng J 60(5):4483–4503. https://doi.org/10.1016/j.aej.2021.03.013

    Article  Google Scholar 

  90. Ji JH, Deng ZW, Chen TY, Fang LN, Fu YH (2021) Analysis of hydrodynamic lubrication of partially textured infinitely long tilting pad thrust bearing. Surf Technol 50(02):246–253. https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.02.025

  91. Gropper D, Harvey TJ, Wang L (2018) Numerical analysis and optimization of surface textures for a tilting pad thrust bearing. Tribol Int 124:134–144. https://doi.org/10.1016/j.triboint.2018.03.034

    Article  Google Scholar 

  92. Etsion I (2004) Improving tribological performance of mechanical components by laser surface texturing. Tribol Lett 17(4):733–737. https://doi.org/10.1007/s11249-004-8081-1

    Article  Google Scholar 

  93. Zhang H, Liu Y, Hafezi M, Dong GN (2020) A distribution design for circular concave textures on sectorial thrust bearing pads. Tribol Int 149:105733. https://doi.org/10.1016/j.triboint.2019.04.017

    Article  Google Scholar 

  94. Gropper D, Wang L, Harvey TJ (2016) Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings. Tribol Int 94:509–529. https://doi.org/10.1016/j.triboint.2015.10.009

    Article  Google Scholar 

  95. Wang YJ, Li Q, Zhang S, Xu WW, Tang XH, Wang ZB (2021) Elastohydrodynamic lubrication analysis and multi-objective collaborative optimization of textured water-lubricated thrust bearings. Surf Technol 50(05):141–151. https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.05.015

  96. Sharma SC, Yadav SK (2014) Performance analysis of a fully textured hybrid circular thrust pad bearing system operating with non-Newtonian lubricant. Tribol Int 77:50–64. https://doi.org/10.1016/j.triboint.2014.04.013

    Article  Google Scholar 

  97. Sharma SC, Yadav SK (2016) A comparative study of full and partial textured hybrid orifice compensated circular thrust pad bearing system. Tribol Int 95:170–180. https://doi.org/10.1016/j.triboint.2015.11.008

    Article  Google Scholar 

  98. Liu YF, Ge XY, Li JJ (2020) Graphene lubrication. Applied Mater Today 20:100662. https://doi.org/10.1016/j.apmt.2020.100662

    Article  Google Scholar 

  99. Geng YS, Chen J, Tan H, Cheng J, Zhu SY, Yang J (2021) Tribological performances of CoCrFeNiAl high entropy alloy matrix solid-lubricating composites over a wide temperature range. Tribol Int 157:106912. https://doi.org/10.1016/j.triboint.2021.106912

    Article  Google Scholar 

  100. Xi ZC, Wan HQ, Ma YJ, Wu YP, Chen L, Li HX, Hou GL (2021) In-situ synthesis of Cu2S nanoparticles to consolidate the tribological performance of PAI-PTFE bonded solid lubricating coatings. Prog Org Coat 154:106197. https://doi.org/10.1016/j.porgcoat.2021.106197

    Article  Google Scholar 

  101. Wu LP, Gu L, Xie ZJ, Song BY (2017) Improved tribological properties of Si3N4/GCr15 sliding pairs with few layer graphene as oil additives. Ceram Int 43(16):14218–14224. https://doi.org/10.1016/j.ceramint.2017.07.168

    Article  Google Scholar 

  102. Zhang KD, Deng JX, Lei ST, Yu XM (2016) Effect of micro/nano-textures and burnished MoS 2 addition on the tribological properties of PVD TiAlN coatings against AISI 316 stainless steel. Surf Coat Technol 291:382–395. https://doi.org/10.1016/j.surfcoat.2016.03.008

    Article  Google Scholar 

  103. Wu Z, Deng JX, Xing YQ, Cheng HW, Zhao J (2012) Effect of surface texturing on friction properties of WC/Co cemented carbide. Mater Des 41:142–149. https://doi.org/10.1016/j.matdes.2012.05.012

    Article  Google Scholar 

  104. Hu TC, Hu LT, Ding Q (2012) Effective solution for the tribological problems of Ti-6Al-4V: Combination of laser surface texturing and solid lubricant film. Surf Coat Technol 206(24):5060–5066. https://doi.org/10.1016/j.surfcoat.2012.06.014

    Article  Google Scholar 

  105. Mi PB, Ye FX (2018) Wear performance of the WC/Cu self-lubricating textured coating. Vacuum 157:17–20. https://doi.org/10.1016/j.vacuum.2018.08.029

    Article  Google Scholar 

  106. Calabrese L, Khaskhoussi A, Patane S, Proverbio E (2019) Assessment of super-hydrophobic textured coatings on AA6082 aluminum alloy. Coatings 9(6):352. https://doi.org/10.3390/coatings9060352

    Article  Google Scholar 

  107. Xing YQ, Wang XS, Du ZH, Zhu ZW, Wu Z, Liu L (2022) Synergistic effect of surface textures and DLC coatings for enhancing friction and wear performances of Si3N4/TiC ceramic. Ceram Int 48(1):514–524. https://doi.org/10.1016/j.ceramint.2021.09.128

    Article  Google Scholar 

  108. Xing YQ, Luo C, Wan YZ, Huang P, Wu Z, Zhang KD (2021) Formation of bionic surface textures composed by micro-channels using nanosecond laser on Si3N4-based ceramics. Ceram Int 47(9):12768–12779. https://doi.org/10.1016/j.ceramint.2021.01.137

    Article  Google Scholar 

  109. Xing YQ, Wu Z, Yang JJ, Wang XS, Liu L (2020) LIPSS combined with ALD MoS2 nano-coatings for enhancing surface friction and hydrophobic performances. Surf Coat Technol 385:125396. https://doi.org/10.1016/j.surfcoat.2020.125396

    Article  Google Scholar 

  110. Xue YW, Shi XL, Zhou HY, Zhang J (2020) Effects of groove-textured surface combined with Sn-Ag-Cu lubricant on friction-induced vibration and noise of GCr15 bearing steel. Tribol Int 148:106316. https://doi.org/10.1016/j.triboint.2020.106316

    Article  Google Scholar 

  111. Da G, Zhang P, Jiang YY, Song CF, Tan DQ, Yu DP (2022) Effects of surface texturing and laminar plasma jet surface hardening on the tribological behaviors of GCr15 bearing steel. Tribol Int 169:107465. https://doi.org/10.1016/j.triboint.2022.107465

    Article  Google Scholar 

  112. Meng Y, Deng JX, Lu Y, Wang SJ, Wu JX, Sun W (2021) Fabrication of AlTiN coatings deposited on the ultrasonic rolling textured substrates for improving coatings adhesion strength. Appl Surf Sci 550:149394. https://doi.org/10.1016/j.apsusc.2021.149394

    Article  Google Scholar 

  113. Niu YX, Pang XJ, Yue SW, Wang S, Song CF, Bao SG, Zhang YZ (2022) Improving tribological properties of Ti-Zr alloys under starved lubrication by combining thermal oxidation and laser surface texturing. Wear 496–497:204279. https://doi.org/10.1016/J.WEAR.2022.204279

    Article  Google Scholar 

Download references

Funding

This work was supported by The National Natural Science Foundation of China (51872122), the Postdoctoral Science Foundation of China (2017M620286), The Key Research and Development Program of Shandong Province, China (2018CXGC0809), Major Basic Research Projects of Shandong Natural Science Foundation (ZR2020ZD06), Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program (2019KJB021), and Experts from Taishan Scholars and Youth Innovation in Science & Technology Support Plan of Shandong Province University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Reference 80 has been updated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, F., Yang, X., Dong, W. et al. Research and prospect of textured sliding bearing. Int J Adv Manuf Technol 121, 1–25 (2022). https://doi.org/10.1007/s00170-022-09281-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09281-2

Keywords

Navigation