Skip to main content
Log in

Biosynthesis of uridine diphosphate N-acetyl-L-fucosamine in a cell-free system from Salmonella arizonae O:59

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The conversion of uridine diphosphate N-acetyl-D-glucosamine into uridine diphosphate N-acetyl-L-fucosamine was demonstrated with enzymes from cytoplasmic fraction of Salmonella arizonae O:59 cells in the presence of NAD+ (NADP+) and NADPH. The reaction product was identified by ion-pair, reverse-phase HPLC with the use of synthetic nucleoside diphosphate sugar standards under conditions specially developed for separation of uridine diphosphate 2acetamido-2,6-dideoxyhexoses. L-Fucose dehydrogenase from porcine liver was shown to be applicable for determination of N-acetyl-L-fucosamine, this enzyme being used to confirm L-configuration of the amino sugar residue in the sugar nucleotide formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NDPS:

nucleoside diphosphate sugars

D-FucNAc:

2-acetamido-2,6-dideoxy-D-galactose (N-acetyl-D-fucosamine)

L-FucNAc:

2-acetamido-2,6-dideoxy-L-galactose (N-acetyl-L-fucosamine)

GlcNAc:

N-acetyl-D-glucosamine

ManNAc:

N-acetyl-D-mannosamine

L-PneNAc:

2-acetamido-2,6-dideoxy-L-talose (N-acetyl-L-pneumosamine)

REFERENCES

  1. Lindberg, B. (1990) Adv. Carbohydr. Chem. Biochem., 48, 279–318.

    Google Scholar 

  2. Knirel, Yu. A., and Kochetkov, N. K. (1994) Biochemistry (Moscow), 59, 1325–1384.

    Google Scholar 

  3. Jansson, P.-E. (1999) in Endotoxin in Health and Disease (Brade, H., Opal, S. M., Vogel, S. N., and Morrison, D. C., eds.) Marcel Dekker, New York-Basel, pp. 155–178.

    Google Scholar 

  4. Kamerling, J. P. (2000) in Streptococcus pneumoniae: Molecular Biology and Mechanisms of Disease (Tomacz, A., ed.) Mary Ann Liebert Inc., Larchmont, N. Y., pp. 81–114.

    Google Scholar 

  5. Moreau, M., Richards, J. C., Fournier, J.-M., Byrd, R. A., Karakawa, W. W., and Vann, W. F. (1990) Carbohydr. Res., 201, 285–297.

    Google Scholar 

  6. Cryz, S. J., Pitt, T. L., Fuerer, E., and Germanier, R. (1984) Infect. Immun., 44, 508–513.

    Google Scholar 

  7. Thakker, M., Park, J. S., Carey, V., and Lee, J. C. (1998) Infect. Immun., 66, 5183–5189.

    Google Scholar 

  8. Shibaev, V. N. (1986) Adv. Carbohydr. Chem. Biochem., 44, 277–339.

    Google Scholar 

  9. Field, R. A., and Naismith, J. H. (2003) Biochemistry, 42, 7637–7642.

    Google Scholar 

  10. Samuel, G., and Reeves, P. (2003) Carbohydr. Res., 338, 2503–2519.

    Google Scholar 

  11. Druzhinina, T. N., Goshadze, M. Sh., Streshinskaya, G. M., and Shibaev, V. N. (1988) Bioorg. Khim., 14, 1690–1694.

    Google Scholar 

  12. Druzhinina, T. N., Goshadze, M. Sh., Streshinskaya, G. M., Shibaev, V. N., and Naumova, I. B. (1991) Bioorg. Khim., 17, 671–677.

    Google Scholar 

  13. Sau, S., Bhasin, N., Wann, E. R., Lee, J. C., Foster, T. J., and Lee, Y. C. (1997) Microbiology, 143, 2395–2405.

    Google Scholar 

  14. Dean, C. R., Franklund, C. V., Retief, D. J., Coyne, M. J., Hatano, K., Evans, D. J., Pier, G. B., and Goldberg, J. H. (1999) J. Bacteriol., 181, 4275–4284.

    Google Scholar 

  15. Lee, J. C., and Lee, Y. C. (1999) in Genetics of Bacterial Polysaccharides (Goldberg, J. H., ed.) CRC Press, Boca Raton, pp. 185–205.

    Google Scholar 

  16. Jiang, S.-M., Wang, L., and Reeves, P. R. (2001) Infect. Immun., 69, 1244–1255.

    Google Scholar 

  17. D’Souza, J., Wang, L., and Reeves, P. (2002) Gene, 297, 123–127.

    Google Scholar 

  18. Vinogradov, E. V., Knirel, Yu. A., Lipkind, G. M., Shashkov, A. S., Kochetkov, N. K., Stanislavsky, E. S., and Kholodkova, E. V. (1987) Bioorg. Khim., 13, 1275–1281.

    Google Scholar 

  19. Illarionov, P. A., Torgov, V. I., Hancock, I., and Shibaev, V. N. (2000) Russ. Chem. Bull., 49, 1891–1894.

    Google Scholar 

  20. Illarionov, P. A., Torgov, V. I., Hancock, I., and Shibaev, V. N. (2001) Russ. Chem. Bull., 50, 1303–1308.

    Google Scholar 

  21. Schachter, H., Sarney, J., McGuire, E. J., and Roseman, S. (1969) J. Biol. Chem., 244, 4785–4792.

    Google Scholar 

  22. Payne, S. M., and Ames, B. N. (1982) Analyt. Biochem., 123, 151–161.

    Google Scholar 

  23. Palmieri, M. J., Berry, G. T., Player, D. A., Rogers, S., and Segal, S. (1991) Analyt. Biochem., 194, 388–393.

    Google Scholar 

  24. Lagunas, R., and Diez-Masa, J. C. (1994) Analyt. Biochem., 216, 188–194.

    Google Scholar 

  25. Tomiya, M., Ailor, E., Lawrence, S. M., Betenbaugh, M. J., and Lee, Y. C. (2001) Analyt. Biochem., 293, 129–137.

    Google Scholar 

  26. Rabina, J., Maki, M., Savilahti, E. M., Jarvinen, N., Penttila, L., and Renkonen, R. (2001) Glycoconjugate J., 18, 799–805.

    Google Scholar 

  27. Finch, P. R., Yuen, R., Schachter, H., and Moscarello, M. A. (1969) Analyt. Biochem., 31, 296–305.

    Google Scholar 

  28. Tsay, G. C., and Dawson, G. (1977) Analyt. Biochem., 78, 423–427.

    Google Scholar 

  29. Cohenfold, M. A., Abraham, A., Abraham, J., and Dain, J. A. (1989) Analyt. Biochem., 177, 172–177.

    Google Scholar 

  30. Kawamura, T., Kimura, M., Yamamori, S., and Ito, E. (1978) J. Biol. Chem., 253, 3595–3601.

    Google Scholar 

  31. Kawamura, T., Ishimoto, N., and Ito, E. (1979) J. Biol. Chem., 254, 8457–8465.

    Google Scholar 

  32. Yoneyama, T., Koike, Y., Arakawa, H., Yokoyama, K., Sasaki, Y., Kawamura, T., Araki, Y., Ito, E., and Takao, S. (1982) J. Bacteriol., 149, 15–21.

    Google Scholar 

  33. Kawamura, T., Ichihara, N., Sugiyama, S., Yokota, H., Ishimoto, N., and Ito, E. (1985) J. Biochem., 98, 105–116.

    Google Scholar 

  34. Meier-Dieter, U., Starman, R., Barr, K., Mayer, H., and Rick, P. D. (1990) J. Biol. Chem., 265, 13490–13497.

    Google Scholar 

  35. Kiser, K. B., Bhasin, N., Deng, L., and Lee, J. C. (1999) J. Bacteriol., 181, 4818–4824.

    Google Scholar 

  36. Kneidinger, B., O’Riordan, K., Li, J., Brisson, J.-R., Lee, J. C., and Lam, J. S. (2003) J. Biol. Chem., 278, 3615–3627.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Biokhimiya, Vol. 70, No. 1, 2005, pp. 105–112. Original Russian Text Copyright © 2005 by Druzhinina, Kalinchuk, Shibaev. Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM04-096, October 10, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Druzhinina, T.N., Kalinchuk, N.A. & Shibaev, V.N. Biosynthesis of uridine diphosphate N-acetyl-L-fucosamine in a cell-free system from Salmonella arizonae O:59. Biochemistry (Moscow) 70, 85–91 (2005). https://doi.org/10.1007/PL00021764

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00021764

Key words

Navigation