Skip to main content
Log in

Rapid evolution of a young L1 (LINE-1) clade in recently speciated rattus taxa

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

L1 elements are retrotransposons that have been replicating and evolving in mammalian genomes since before the mammalian radiation. Rattus norvegicus shares the young L1mlvi2 clade only with its sister taxon, Rattus cf moluccarius. Here we compared the L1mlvi2 clade in these recently diverged species and found that it evolved rapidly into closely related but distinct clades: the L1mlvi2-rm clade (or subfamily), characterized here from R. cf moluccarius, and the L1mlvi2-rn clade, originally described in R. norvegicus. In addition to other differences, these clades are distinguished by a cluster of amino acid replacement substitutions in ORF I. Both rat species contain the L1mlvi2-rm clade, but the L1mlvi2-rn clade is restricted to R. norvegicus. Therefore, the L1mlvi2-rm clade arose prior to the divergence of R. norvegicus and R. cf moluccarius, and the L1mlvi2-rn clade amplified after their divergence. The total number of L1mlvi2-rm elements in R. cf moluccarius is about the same as the sum of the L1mlvi2-rm and L1mlvi2-rn elements in R. norvegicus. The possibility that L1 amplification is in some way limited so that the two clades compete for replicative supremacy as well as the implications of the other distinguishing characteristic of the L1mlvi2-rn and L1mlvi2-rm clades are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adey NB, Schichman SA, Graham DK, Peterson SN, Edgell MH, Hutchison III CA (1994a) Rodent L1 evolution has been driven by a single dominant lineage that has repeatedly acquired new transcriptional regulatory sequences. Mol Biol Evol 11: 778–789

    PubMed  CAS  Google Scholar 

  • Adey NB, Tollefsbol TO, Sparks AB, Edgell MH, Hutchison III CA (1994b) Molecular resurrection of an extinct ancestral promoter for mouse L1. Proc Natl Acad Sci USA 91: 1569–1573

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA (1989) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Cabot EL, Beckenbach AT (1989) Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput Applic Biosci 5: 233–234

    CAS  Google Scholar 

  • Casavant NC, Hardies SC (1994a) The dynamics of murine LINE-1 subfamily amplification. J Mol Biol 241: 390–397

    Article  PubMed  CAS  Google Scholar 

  • Casavant NC, Hardies SC (1994b) Shared sequence variants of Mus spretus LINE-1 elements tracing dispersal to within the last 1 million years. Genetics 137: 565–572

    PubMed  CAS  Google Scholar 

  • Casavant NC, Hardies SC, Funk FD, Comer MB, Edgell MH, Hutchison III CA (1988) Extensive movement of LINES ONE sequences in beta-globin loci of Mus caroli and Mus domesticus. Mol Cell Biol 8: 4669–4674

    PubMed  CAS  Google Scholar 

  • D’Ambrosio E, Waitzkin SD, Witney FR, Salemme A, Furano AV (1986) Structure of the highly repeated, long interspersed DNA family (LINE or L1Rn) of the rat. Mol Cell Biol 6: 411–424

    PubMed  Google Scholar 

  • Fanning T, Singer MF (1987a) The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins. Nucleic Acids Res 15: 2251–2260

    Article  PubMed  CAS  Google Scholar 

  • Fanning TG (1983) Size and structure of the highly repetitive BAM HI element in mice. Nucleic Acids Res 11: 5073–5091

    Article  PubMed  CAS  Google Scholar 

  • Fanning TG, Singer MF (1987b) LINE-1: a mammalian transposable element. Biochem Biophys Acta 910: 203–212

    PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package). University of Washington, Seattle

    Google Scholar 

  • Furano AV, Robb SM, Robb FT (1988) The structure of the regulatory region of the rat L1 (L1Rn, long interspersed repeated) DNA family of transposable elements. Nucleic Acids Res 16: 9215–9231

    Article  PubMed  CAS  Google Scholar 

  • Furano AV, Usdin K (1995) DNA “fossils” and phylogenetic analysis. J Biol Chem 270: 25301–25304

    Article  PubMed  CAS  Google Scholar 

  • Hardies SC, Martin SL, Voliva CF, Hutchison III CA, Edgell MH (1986) An analysis of replacement and synonymous changes in the rodent L1 repeat family. Mol Biol Evol 3: 109–125

    PubMed  CAS  Google Scholar 

  • Hattori M, Kuhara S, Takenaka O, Sakaki Y (1986) L1 family of repetive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein. Nature 321: 625–628

    Article  PubMed  CAS  Google Scholar 

  • Hayward BE, Zavanelli M, Furano AV (1997) Recombination creates novel L1 (LINE 1) elements in Rattus norvegicus. Genetics 146: 641–654

    PubMed  CAS  Google Scholar 

  • Hohjoh H, Singer MF (1996) Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J 15: 630–639

    PubMed  CAS  Google Scholar 

  • Hutchison III CA, Hardies SC, Loeb DD, Shehee WR, Edgell MH (1989) LINEs and related retroposons: long interspersed repeated sequences in the eucaryotic genome. Mobile DNA. Washington, D.C., American Society for Microbiology, 593–617

    Google Scholar 

  • Jubier-Maurin V, Cuny G, Laurent A-M, Paquereau L, Roizes G (1992) A new 5′ sequence associated with mouse L1 elements is representative of a major class of L1 termini. Mol Biol Evol 9: 41–55

    PubMed  CAS  Google Scholar 

  • Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332: 164–166

    Article  PubMed  CAS  Google Scholar 

  • Kilbourne ED (1994) Host determination of viral evolution: a variable tautology. The evolutionary biology of viruses. Raven Press, New York, pp 253–271

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120

    Article  PubMed  CAS  Google Scholar 

  • Kolosha VO, Martin SL (1995) Polymorphic sequences encoding the first open reading frame protein from LINE-1 ribonucleoprotein particles. J Biol Chem 270: 2868–2873

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (1993) MEGA: Molecular evolutionary genetics analysis. The Pennsylvania State University, University Park

    Google Scholar 

  • Martin SL (1991) Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol Cell Biol 11: 4804–4807

    PubMed  CAS  Google Scholar 

  • Martin SL, Voliva CF, Hardies SC, Edgell MH, Hutchison III CA (1985) Tempo and mode of concerted evolution in the L1 repeat family of mice. Mol Biol Evol 2: 127–140

    PubMed  CAS  Google Scholar 

  • Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254: 1808–1810

    Article  PubMed  CAS  Google Scholar 

  • Minakami R, Kurose K, Etoh K, Furuhata Y, Hattori M, Sakaki Y (1992) Identification of an internal cis-element essential for the human L1 transcription and a nuclear factor(s) binding to the element. Nucleic Acids Res 20: 3139–3145

    Article  PubMed  CAS  Google Scholar 

  • Nur I, Pascale E, Furano AV (1988) The left end of rat L1 (L1Rn, long interspersed repeated) DNA which is a CpG island can function as a promoter. Nucleic Acids Res 16: 9233–9251

    Article  PubMed  CAS  Google Scholar 

  • Padgett RW, Hutchison III CA, Edgell MH (1988) The F-type 5′ motif of mouse L1 elements: a major class of L1 termini similar to the A-type in organization but unrelated in sequence. Nucleic Acids Res 16: 739–749

    Article  PubMed  CAS  Google Scholar 

  • Pascale E, Liu C, Valle E, Usdin K, Furano AV (1993) The evolution of long interspersed repeated DNA (L1, LINE 1) as revealed by the analysis of an ancient rodent L1 DNA family. J Mol Evol 36: 9–20

    Article  PubMed  CAS  Google Scholar 

  • Pascale E, Valle E, Furano AV (1990) Amplification of an ancestral mammalian L1 family of long interspersed repeated DNA occurred just before the murine radiation. Proc Natl Acad Sci USA 87: 9481–9485

    Article  PubMed  CAS  Google Scholar 

  • Prager EM, Sage RD, Gyllensten U, Thomas WK, Hübner R, Jones CS, Noble L, Searle JB, Wilson AC (1993) Mitochondrial DNA sequence diversity and the colonization of Scandinavia by house mice from East Holstein. Bio J Linnean Soc 50: 85–122

    Article  Google Scholar 

  • Schichman SA, Adey NB, Edgell MH, Hutchison III CA (1993) L1 A-monomer tandem arrays have expanded during the course of mouse L1 evolution. Mol Biol Evol 10: 552–570

    PubMed  CAS  Google Scholar 

  • Schichman SA, Severynse DM, Edgell MH, Hutchison III CA (1992) Strand-specific LINE-1 transcription in mouse F9 cells originates from the youngest phylogenetic subgroup of LINE-1 elements. J Mol Biol 224: 559–574

    Article  PubMed  CAS  Google Scholar 

  • Scott AF, Schmeckpeper BJ, Abdelrazik M, Comey CT, O’Hara B, Rossiter JP, Cooley T, Heath P, Smith KD, Margolet L (1987) Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1: 113–125

    Article  PubMed  CAS  Google Scholar 

  • Severynse DM, Hutchison III CA, Edgell MH (1992) Identification of transcriptional regulatory activity within the 5′ A-type monomer sequence of the mouse LINE-1 retroposon. Mammalian Genome 2: 41–50

    Article  PubMed  CAS  Google Scholar 

  • Singer MF (1995) Unusual reverse transcriptases. J Biol Chem 270: 24623–24626

    PubMed  CAS  Google Scholar 

  • Swergold GD (1990) Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol 10: 6718–6729

    PubMed  CAS  Google Scholar 

  • Swofford DL (1993) PAUP: Phylogenetic analysis using parsimony. Illinois Natural History Survey, Champaign

    Google Scholar 

  • Usdin K, Chevret P, Catzeflis F, Verona R (1995) L1 (LINE) retrotransposable elements provide a “Fossil” record of the phylogenetic history of murid rodents. Mol Biol Evol 12: 73–82

    PubMed  CAS  Google Scholar 

  • Voliva CF, Jahn CL, Comer MB, Hutchison III CA, Edgell MH (1983) The L1Md long interspersed repeat family in the mouse: Almost all examples are truncated at one end. Nucleic Acids Res 11: 8847–8859

    Article  PubMed  CAS  Google Scholar 

  • Voliva CF, Martin SL, Hutchison III CA, Edgell MH (1984) Dispersal process associated with the L1 family of interspersed repetitive DNA sequences. J Mol Biol 178: 795–813

    Article  PubMed  CAS  Google Scholar 

  • Wincker P, Jubier-Maurin V, Roizès G (1987) Unrelated sequences at the 5′ end of mouse LINE-1 repeated elements define two distinct subfamilies. Nucleic Acids Res 15: 8593–8606

    Article  PubMed  CAS  Google Scholar 

  • Witney FR, Furano AV (1984) Highly repeated DNA families in the rat. J Biol Chem 259: 10481–10492

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabot, E.L., Angeletti, B., Usdin, K. et al. Rapid evolution of a young L1 (LINE-1) clade in recently speciated rattus taxa. J Mol Evol 45, 412–423 (1997). https://doi.org/10.1007/PL00006246

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00006246

Key words

Navigation