Skip to main content
Log in

Identification of transcriptional regulatory activity within the 5′ A-type monomer sequence of the mouse LINE-1 retroposon

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

LINE-1 (L1) is a retroposon found in all mammals. In the mouse, approximately 10% of L1 elements are full-length and can be grouped into two classes, A or F, based upon the type of monomer sequence repeated at the 5′ end. In order to test for promoter activity in the 5′ end of the A-type mouse L1 element, we cloned several different A-monomers into a promoterless chloramphenicol acetyltransferase (CAT) vector. The A-monomer constructs varied in their ability to regulate transcription of theCAT gene, exhibitingCAT activity 16–37% of that detected with the Rous sarcoma virus promoter and enhancer. A series of A-monomer deletions were tested for their ability to regulateCAT expression and gel retardation experiments were performed to identify regions of the A-monomer that may be involved in L1 transcriptional regulation. A-monomer sequences are usually found repeated 2–5 times at the 5′ end of a full-length mouse L1. In the absence of long terminal repeats or an internal promoter, the tandem array of A-monomers may provide a mechanism for A-type L1 elements to generate transcripts containing transcriptional regulatory sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J.W., Kaufman, R.E., Kretshmer, P.J., Harrison, M., and Nienhuis, A.W.: A family of long reiterated DNA sequences, one copy of which is found next to the human β-globin gene.Nucl Acids Res 8: 6113–6128, 1980.

    Google Scholar 

  • Aksoy, S., Williams, S., Chang, S., and Richards, F.F.: SLACS retroposon fromTrypanosoma brucei gambiense is similar to mammalian LINEs.Nucl Acids Res 18: 785–792, 1990.

    Google Scholar 

  • Banjeri, J., Olsen, L. and Schaffner, W.: A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes.Cell 33: 729–740, 1983.

    Google Scholar 

  • Besansky, N.J.: A retrotransposable element from the mosquitoAnopheles gambiae.Mol Cell Biol 10: 863–871, 1990.

    Google Scholar 

  • Bohmann, D., Bos, J.T., Admon, A., Nishimura, T., Vogt, P.K. and Tjian, R.: Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1.Science 238: 1386–1392, 1987.

    Google Scholar 

  • Brown, S.D.M. and Dover, G.: Organization and evolutionary progress of a dispersed repetitive family of sequences in widely separate rodent genomes.J Mol Biol 150: 441–466, 1981.

    Google Scholar 

  • Burke, W.D., Calalang, C.C. and Eickbush, T.H.: The site-specific ribosomal insertion element type II ofBombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme.Mol Cell Biol 7: 2221–2230, 1987.

    Google Scholar 

  • Cheng, S.M. and Schildkraut, C.L.: A family of moderately repetitive sequences in mouse DNA.Nucl Acids Res 8: 4075–4090, 1980.

    Google Scholar 

  • Diamond, M.I., Miner, J.N., Yoshinaga, S.K., and Yamamoto, K.R.: Transcription factor interaction: Selectors of positive or negative regulation from a single DNA element.Science 249: 1266–1272, 1990.

    Google Scholar 

  • Dignam, J.D., Martin, P.L., Shastry, B.S., and Roeder, R.G.: Eukaryotic gene transcription with purified components.Methods Enzymol 101: 582–598, 1983.

    Google Scholar 

  • DiNocera, P.P., Graziani, F., and Lavorgna, G.: Genomic and structural organization ofDrosophila melanogaster G elements.Nucl Acids Res 14: 675–691, 1986.

    Google Scholar 

  • DiNocera, P.P., and Casari, G.: Related polypeptides are encoded byDrosophila F elements, I factors, and mammalian L1 sequences.Proc Natl Acad Sci USA 84: 5843–5847, 1987.

    Google Scholar 

  • Dudley, J.P.: Discrete high molecular weight RNA transcribed from the long interspersed repetitive element L1Md.Nucl Acids Res 15: 2581–2591, 1987.

    Google Scholar 

  • Edgell, M.H., Hardies, S.C., Loeb, D.D., Shehee, W.R., Padgett, R.W., Burton, F.H., Comer, M.B., Casavant, N.C., Funk, F.D. and Hutchison III, C.A.: The L1 family in mice.In G. Stamatoyannopolos and A.W. Nienhuis (eds.);Developmental Control of Globin Gene Expression, pp. 107–129, Alan R. Liss, Inc., New York, 1987.

    Google Scholar 

  • Fanning, T.G.: Characterization of a highly repetitive family of DNA sequences in the mouse.Nucl Acids Res 10: 5003–5013, 1982.

    Google Scholar 

  • Fanning, T.G.: Size and structure of the highly repetitiveBamH I element in ice.Nucl Acids Res 11: 5073–5091, 1983.

    Google Scholar 

  • Fanning, T.G., and Singer, M.F.: LINE-1: A mammalian transposable element.Biochem Biophys Acta 910: 203–212, 1987.

    Google Scholar 

  • Fawcett, D.H., Lister, C.K., Kellett, E. and Finnegan, D.J.: Transposable elements controlling I-R hybrid dysgenesis inD. melanogaster are similar to mammalian LINEs.Cell 47: 1007–1015, 1986.

    Google Scholar 

  • Finnegan, D.J.: I-Factors inDrosophila melanogaster and similar elements in other eukaryotes.Symp Soc Gen Microbiol 43: 271–285, 1988.

    Google Scholar 

  • Furano, A.V., Robb, S.M. and Robb, F.T.: The structure of the regulatory region of the rat L1 (L1Rn, long interspersed repeated DNA) family of transposable elements.Nucl Acids Res 16: 9215–9233, 1988.

    Google Scholar 

  • Garrett, J.E., Knutzon, D.S. and Carroll, D.: Composite transposable elements in theXenopus laevis genome.Mol Cell Biol 9: 3018–3027, 1989.

    Google Scholar 

  • Gillies, S.D., Morrison, S.L., Oi, V.T., and Tonegawa, S.: A tissue-specific transcription enhancer is located in the major intron of a rearranged immunoglobulin heavy chain gene.Cell 33: 717–728, 1983.

    Google Scholar 

  • Gorman, C.M., Moffat, L.F., and Howard, B.H.: Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells.Mol Cell Biol 2: 1044–1051, 1982.

    Google Scholar 

  • Grimaldi, G., Skowronski, J. and Singer, M.F.: Defining the beginning and end of theKpn I family elements.EMBO J 3: 1753–1759, 1984.

    Google Scholar 

  • Hattori, M., Kuhara, S., Takenaka, O., and Sakaki, Y.: L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein.Nature 321: 625–628, 1986.

    Google Scholar 

  • Hutchison III, C.A., Hardies, S.C., Loeb, D.D., Shehee, W.R. and Edgell, M.H.: LINEs and related retroposons: Long interspersed repeat sequences in the eukaryotic genome.In D.E. Berg and M.H. Howe (eds.).Mobile DNA, pp. 593–617, American Society for Microbiology, Washington, D.C., 1989.

    Google Scholar 

  • Kadonaga, J.T., Carner, K.R., Masiarz, F.R., and Tjian, R.: Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain.Cell 51: 1079–1090, 1987.

    Google Scholar 

  • Kleinert, H., Brednow, S., and Benecke, B.-J.: Expression of a human 7S K RNA gene in vivo requires a novel pol III upstream element.EMBO J 9: 711–718, 1990.

    Google Scholar 

  • Kimmel, B.E., Ole-Moiyoi, O.K., and Young, J.R.: Ingi, a 5.2 kb dispersed sequence element fromTrypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian LINEs.Mol Cell Biol 7: 1465–1475, 1987.

    Google Scholar 

  • Kouzarides, T. and Ziff, E.: The role of the leucine zipper in the fos-jun interaction.Nature 336: 646–651, 1988.

    Google Scholar 

  • Leibold, D.M., Swergold, G.D., Singer, M.F., Thayer, R.E., Dombroski, B.A. and Fanning, T.G.: Translation of LINE-1 DNA elements in vitro and in human cells.Proc Natl Acad Sci USA 87: 6990–6994, 1990.

    Google Scholar 

  • Loeb, D.D., Padgett, R.W., Hardies, S.C., Shehee, W.R., Comer, M.B., Edgell, M.H., and Hutchison III, C.A.: The sequence of a large L1Md element reveals a tandemly repeated 5′ end and several features found in retroposons.Mol Cell Biol 6: 168–182, 1986.

    Google Scholar 

  • Martin, S.L., Voliva, C.F., Hardies, S.C., Edgell, M.H. and Hutchison III, C.A.: Tempo and ode of concerted evolution in the L1 repeat family of mice.Mol Biol Evol 2: 127–140, 1985.

    Google Scholar 

  • Mizrokhi, L.J., Georgieva, S.G., and Ilyin, Y.V.: Jockey, a mobileDrosophila element similar to mammalian LINEs is transcribed from the internal promoter by RNA polymerase II.Cell 54: 685–691, 1988.

    Google Scholar 

  • Myers, R.M., Tilly, K., and Maniatis, T.: Fine structure genetic analysis of a β-globin promoter.Science 232: 613–618, 1986.

    Google Scholar 

  • Nur, I., Pascale, E., and Furano, A.V.: The left end of rat L1 (L1Rn, long interspersed repeated) DNA which is a CpG island can function as a promoter.Nucl Acids Res 16: 9233–9249, 1988.

    Google Scholar 

  • Osborne, T.F., Gil, G., Brown, M.S., Kowal, R.C. and Goldstein, J.L.: Identification of promoter elements required for in vitro transcription of hamster 3-hydroxy-3-methylglutaryl coenzyme A reductase gene.Proc Natl Acad Sci USA 84: 3614–3618, 1987.

    Google Scholar 

  • Padgett, R.W., Hutchison III, C.A. and Edgell, M.H.: The F-type 5′ motif of mouse L1 elements: A major class of L1 termini similar to the A-type in organization but unrelated in sequence.Nucl Acids Res 16: 739–749, 1988.

    Google Scholar 

  • Pittler, S.J. and Davis, R.L.: A new family of poly-deoxyadenylated class ofDrosophila transposable elements identified by a representative member at thedunce locus.Mol Gen Genet 208: 325–328, 1987.

    Google Scholar 

  • Reynolds, G.A., Basu, S.K., Osborne, T.F., Chin, D.J., Gil, G., Brown, M.S., Goldstein, J.L. and Luskey, K.L.: HMG CoA reductase: A negatively regulated gene with unusual promoter and 5′ untranslated regions.Cell 38: 275–285, 1984.

    Google Scholar 

  • Rogers, J.: The origin and evolution of retroposons.Int Rev Cytol 93: 187–279, 1985.

    Google Scholar 

  • Schwarz-Sommer, Z., Leclerq, L., Gobel, E. and Saedler, H.: Cin4, an insert altering the structure of the A1 gene inZea mays, exhibits properties of nonviral retrotransposons.EMBO J 6: 3873–3880, 1987.

    Google Scholar 

  • Schule, R., Muller, M., Otsuka-Murakami, H, and Renkawitz, R.: Cooperativity of the glucocorticoid receptor and the CACCC-box binding factor.Nature 332: 87–90, 1988.

    Google Scholar 

  • Seed, B. and Sheen, J.-Y.: A simple phase-extraction assay for chloramphenicol acyltransferase activity.Gene 67: 271–277, 1988.

    Google Scholar 

  • Shehee, W.R., Chao, S.-F., Loeb, D.D., Comer, M.B., Hutchison III, C.A. and Edgell, M.H.: Determination of a functional ancestral sequence and definition of the 5′ end of A-type mouse L1 elements.J Mol Biol 196: 757–767, 1987.

    Google Scholar 

  • Singer, M. F., and Skowronski, J.: Making sense out of LINEs: Long interpsersed repeat sequences in mammalian genomes.Trends Biochem Sci 10: 119–122, 1985.

    Google Scholar 

  • Soriano, P., Meunier-Rotival, M. and Bernardi, G.: The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes.Proc Natl Acad Sci USA 80: 1816–1820, 1983.

    Google Scholar 

  • Swergold, G.: Identification, characterization, and cell specificity of a human LINE-1 promoter.Mol Cell Biol 10: 6718–6728, 1990.

    Google Scholar 

  • Valerio, D., Duyvesteyn, M.G.C., Dekker, B.M.M., Weeda, G., Berkvens, Th.M., van der Voorn, L., van Ormondt, H., and van der Eb, A.J.: Adenosine deaminase: Characterization and expression of a gene with a remarkable promoter.EMBO J 4: 437–443, 1985.

    Google Scholar 

  • Voliva, C.F., Jahn, C.L., Comer, M.B., Hutchison, III, C.A. and Edgell, M.H.: The L1Md long interspersed repeat family in the mouse: Almost all examples are truncated at one end.Nucl Acids Res 11: 8847–8859, 1983.

    Google Scholar 

  • Watt, P., Lamb, P., Squire, L., and Proudfoot, N.: A factor binding GATAAG confers tissue specificity on the promoter of the human ζ-globin gene.Nucl Acids Res 18: 1339–1350, 1990.

    Google Scholar 

  • Weber, T., Schmitt, H.P. and Alonso, A.: Differential transcription of the repetitive R element in various mouse cell types.Gene 53: 105–111, 1987.

    Google Scholar 

  • Weiher, H., Konigand, M., and Gruss, P.: Multiple point mutations affecting the simian virus 40 enhancer.Science 219: 626–631, 1983.

    Google Scholar 

  • Weiher, H. and Botchan, M.R.: An enhancer sequence from bovine papilloma virus DNA consists of two essential regions.Nucl Acids Res 12: 2901–2916, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Severynse, D.M., Hutchison, C.A. & Edgell, M.H. Identification of transcriptional regulatory activity within the 5′ A-type monomer sequence of the mouse LINE-1 retroposon. Mammalian Genome 2, 41–50 (1991). https://doi.org/10.1007/BF00570439

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00570439

Keywords

Navigation