Skip to main content
Log in

Evolutionary origin of cryptomonad microalgae: Two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Cryptomonads are complex microalgae which share characteristics of chromophytes (chlorophyll c, extra pair of membranes surrounding the plastids) and rhodophytes (phycobiliproteins). Unlike chromophytes, however, they contain a small nucleus-like organelle, the nucleomorph, in the periplastidial space between the inner and outer plastid membrane pairs. These cellular characteristics led to the suggestion that cryptomonads may have originated via a eukaryoteeukaryote endosymbiosis between a phagotrophic host cell and a unicellular red alga, a hypothesis supported by rRNA phylogenies. Here we characterized cDNAs of the nuclear genes encoding chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from the two cryptomonads Pyrenomonas salina and Guillardia theta. Our results suggest that in cryptomonads the classic Calvin cycle GAPDH enzyme of cyanobacterial origin, GapAB, is absent and functionally replaced by a photosynthetic GapC enzyme of proteobacterial descent, GapCl. The derived GapCl precursor contains a typical signal/transit peptide of complex structure and sequence signatures diagnostic for dual cosubstrate specificity with NADP and NAD. In addition to this novel GapCl gene a cytosol-specific GapC2 gene of glycolytic function has been found in both cryptomonads showing conspicuous sequence similarities to animal GAPDH. The present findings support the hypothesis that the host cell component of cryptomonads may be derived from a phototrophic rather than a organotrophic cell which lost its primary plastid after receiving a secondary one. Hence, cellular compartments of endosymbiotic origin may have been lost or replaced several times in eukaryote cell evolution, while the corresponding endosymbiotic genes (e.g., GapC1) were retained, thereby increasing the chimeric potential of the nuclear genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apt KE, Clendennen SK, Powers DA, Grossman AR (1995) The gene family encoding the fucoxanthin chlorophyll proteins from the brown alga Macrocystis pyrifera. Mol Gen Genet 246:455–464

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D, Grossman AR (1991) Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum. Mol Gen Genet 229:400–404

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D, Grossman AR (1993) Characterization of gene clusters encoding the fucoxanthin chlorophyll proteins of the diatom Phaeodactylum tricornutum. Nucleic Acids Res 21:4458–4466

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann H, Martinez P, Quigley F, Martin W, Cerff R (1987) Endosymbiotic origin and codon bias of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. J Mol Evol 26:320–328

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann H, Cerff R, Salomon M, Soll J (1989) Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach. Plant Mol Biol 13:81–94

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Allsopp MTEP, Chao EE (1994) Chimeric conundra: are nucleomorphs and chromists monophyletic or polyphyletic? Proc Natl Acad Sci USA 91:11368–11372

    Article  PubMed  CAS  Google Scholar 

  • Cerff R (1978) Glyceraldehyde-3-phosphate dehydrogenase (NADP) from Sinapis alba: steady state kinetics. Phytochemistry 17:2061–2067

    Article  CAS  Google Scholar 

  • Cerff R (1982) Separation and purification of NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenases from higher plants. In: Edelman M, Hallick RB, Chua NH (eds) Methods in chloroplast molecular biology. Elsevier Biochemical Press, Amsterdam, pp 683–694

    Google Scholar 

  • Cerff R (1995) The chimaeric nature of nuclear genomes and the antiquity of introns as demonstrated by the GAPDH gene system. In: Go M, Schimmel P (eds) Tracing biological evolution in protein and gene structures. Proceedings of the 20th Taniguchi International Symposium, Division of Biophysics, held in Nagoya, Japan, 31 October-4 November 1994. Elsevier Science, Amsterdam, pp 205–227

    Google Scholar 

  • Cerff R, Chambers SE (1979) Subunit structure of higher plant glyceraldehyde-3-phosphate dehydrogenases (EC 1.2.1.12 and EC 1.2.1.13). J Biol Chem 254:6094–6098

    PubMed  CAS  Google Scholar 

  • Cerff R, Kloppstech K (1982) Structural diversity and differential light control of mRNAs coding for angiosperm glyceraldehyde-3-phosphate dehydrogenases. Proc Natl Acad Sci USA 79:7624–7628

    Article  PubMed  CAS  Google Scholar 

  • Clermont S, Corbier C, Mely Y, Gerard D, Wonacott A, Branlant G (1993) Determinants of coenzyme specificity in glyceraldehyde-3-phosphate dehydrogenase: role of the acidic residue in the fingerprint region of the nucleotide binding fold. Biochemistry 32: 10178–10184

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE (1992) Eukaryote-eukaryote endosymbioses: insights from studies of a cryptomonad alga. Biosystems 28:57–68

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature 350:148–151

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP: phylogeny interference package (version 3.2). Cladistics 5:164–165

    Google Scholar 

  • Fothergill-Gilmore LA, Michels PAM (1993) Evolution of glycolysis. Prog Biophys Mol Biol 59:105–235

    Article  PubMed  CAS  Google Scholar 

  • Gibbs SP (1981a) The chloroplast endoplasmic reticulum: structure, function, and evolutionary significance. Int Rev Cytol 72:49–99

    Article  Google Scholar 

  • Gibbs SP (1981b) The plastids of some algal groups may have evolved from endosymbiotic algae. Ann N Y Acad Sci 36:193–207

    Article  Google Scholar 

  • Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141:233–357

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (1993) Origin and evolution of organelle genomes. Curr Opin Gen Dev 3:884–890

    Article  CAS  Google Scholar 

  • Greenwood AD, Griffiths HB, Santore UJ (1977) Chloroplasts and cell compartments in Cryptophyceae. Br Phycol J 12:119

    Google Scholar 

  • Grossman AR, Bhaya D, Apt KE, Kehoe DM (1995) Light-harvesting complexes in oxygenic photosynthesis: diversity, control and evolution. Annu Rev Genet 29:231–288

    Article  PubMed  CAS  Google Scholar 

  • Hansmann P, Eschbach S (1990) Isolation and preliminary characterization of the nucleus and the nucleomorph of a cryptomonad. Pyrenomonas salina. Eur J Cell Biol 52:373–378

    PubMed  CAS  Google Scholar 

  • Häuber MM, Müller SB, Speth V, Maier U-G (1994) How to evolve a complex plastid?—A hypothesis. Bot Acta 107:383–386

    Google Scholar 

  • Henze K, Badr A, Wettern M, Cerff R, Martin W (1995) A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. Proc Natl Acad Sci USA 92: 9122–9126

    Article  PubMed  CAS  Google Scholar 

  • Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191

    PubMed  CAS  Google Scholar 

  • Hirzmann J, Luo D, Hahnen J, Hobom G (1993) Determination of messenger RNA 5′-ends by reverse transcription of a cap structure. Nucleic Acids Res 21:3597–3598

    Article  PubMed  CAS  Google Scholar 

  • Kersanach R, Brinkmann H, Liaud M-F, Zhang D-X, Martin WF, Cerff R (1994) Five identical intron position in ancient duplicated genes of eubacterial origin. Nature 367:398–389

    Article  Google Scholar 

  • Kroth-Pancic PG (1995) Nucleotide sequence of two cDNAs encoding fucoxanthin chlorophyll a/c proteins in the diatom Odontella sinensis. Plant Mol Biol 27:825–828

    Article  PubMed  CAS  Google Scholar 

  • Liaud M-F, Zhang CX, Cerff R (1990) Differential intron loss and endosymbiontic transfer of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes to the nucleus. Proc Natl Acad Sci USA 87:8918–8922

    Article  PubMed  CAS  Google Scholar 

  • Liaud M-F, Valentin C, Brandt U, Bouget F-Y, Kloareg B, Cerff R (1993) The GAPDH gene system of the red alga Chondrus crispus: promoter structures, intron/exon organization, genomic complexity and differential expression of genes. Plant Mol Biol 23:981–984

    Article  PubMed  CAS  Google Scholar 

  • Liaud M-F, Valentin C, Martin W, Bouget F-Y, Kloareg B, Cerff R (1994) The evolutionary origin of red algae as deduced from the nuclear genes encoding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenase from Chondrus crispus. J Mol Evol 38:319–327

    Article  PubMed  CAS  Google Scholar 

  • Liaud M-F, Brandt U, Cerff R (1995) The marine red algae Chondrus crispus has a highly divergent beta-tubulin gene with a characteristic 5′-intron: functional and evolutionary implications. Plant Mol Biol 28:313–325

    Article  PubMed  CAS  Google Scholar 

  • Maier U-G, Hofmann CJB, Eschbach S, Wolters J, Igloi GL (1991) Demonstration of nucleomorph encoded eukaryotic small subunit ribosomal RNA in cryptomonads. Mol Gen Genet 230:155–160

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Cerff R (1986) Prokaryotic features of a nucleus-encoded enzyme. cDNA sequences for chloroplast and cytosolic glyceral-dehyde-3-phosphate dehydrogenases from mustard (Sinapis alba). Eur J Biochem 159:323–331

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Brinkmann H, Savona C, Cerff R (1993a) Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA 90:8692–8696

    Article  CAS  Google Scholar 

  • Martin W, Lydiate D, Brinkmann H, Forkmann G, Saedler H, Cerff R (1993b) Molecular phylogenies in angiosperm evolution. Mol Biol Evol 10:140–162

    PubMed  CAS  Google Scholar 

  • Martinez P, Martin W, Cerff R (1989) Structure, evolution and anaerobic regulation of a nuclear gene encoding cytosolic glyceraldehyde-3-phosphate dehydrogenase from maize. J Mol Biol 208:551–565

    Article  PubMed  CAS  Google Scholar 

  • Mateos MI, Serrano A (1992) Occurrence of phosphorylating and non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenases in photosynthetic organisms. Plant Sci 163–170

  • McFadden G, Gilson P (1995) Something borrowed, something green: lateral transfer of chloroplasts by secondary endosymbiosis. TREE 10:12–17

    Google Scholar 

  • McFadden GI, Gilson PR, Hill DRA (1994) Eur J Phycol 29:29–32

    Article  Google Scholar 

  • Meyer-Gauen G, Schnarrenberger C, Cerff R, Martin W (1994) Molecular characterization of a novel, nuclear-encoded, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase in plastids of the gymnosperm Pinus sylvestris L. Plant Mol Biol 26:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Michels PA, Marchand M, Kohl L, Allert S, Wierenga RK, Opperdoes FR (1991) The cytosolic and glycosomal isoenzymes of glyceral-dehyde-3-phosphate dehydrogenase in Trypanosoma brucei have a distant evolutionary relationship. Eur J Biochem 198:421–428

    Article  PubMed  CAS  Google Scholar 

  • Müller S, Rensing SA, Martin WF, Maier U-G (1994) cDNA cloning of a Sec61 homologue from the cryptomonad alga Pyrenomonas satina. Curr Genet 26:410–414

    Article  PubMed  Google Scholar 

  • Pupillo P, Faggiani R (1979) Subunit structure of three glyceraldehyde 3-phosphate dehydrogenases of some flowering plants. Arch Bio-chem Biophys 194:581–592

    Article  CAS  Google Scholar 

  • Quigley F, Martin WF, Cerff R (1988) Intron conservation across the prokaryote-eukaryote boundary: structure of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. Proc Natl Acad Sci USA 85:2672–2676

    Article  PubMed  CAS  Google Scholar 

  • Quigley F, Brinkmann H, Martin WF, Cerff R (1989) Strong functional GC pressure in light-regulated maize gene encoding subunit GapA of chloroplast glyceraldehyde-3-phosphate dehydrogenase: implications for the evolution of GapA pseudogenes. J Mol Evol 29: 412–421

    Article  PubMed  CAS  Google Scholar 

  • Ragan MA, Gutell RR (1995) Are red algae plants? Bot J Linn Soc 118:81–105

    Google Scholar 

  • Rensing SA, Goddemeier M, Hofmann CJB, Maier UG (1994) The presence of a nucleomorph hsp70 gene is a common feature of Cryptophyta and Chlorarachniophyta. Curr Genet 26:451–455

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Shih M-C, Lazar G, Goodman HM (1986) Evidence in favor of the symbiontic origin of chloroplasts: primary structure and evolution of tobacco glyceraldehyde-3-phosphate dehydrogenase. Cell 47; 73–80

    Article  PubMed  CAS  Google Scholar 

  • Shih M-C, Heinrich P, Goodman HM (1988) Intron existence predated the divergence of eukaryotes and prokaryotes. Science 242:1164–1166

    Article  PubMed  CAS  Google Scholar 

  • Shih M-C, Heinrich P, Goodman HM (1992) Cloning and chromosomal mapping of nuclear genes encoding chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana (Corrigendum). Gene 119:317–319

    Article  PubMed  CAS  Google Scholar 

  • Singh KK, Chen C, Epstein DK, Gibbs M (1993) Respiration of sugars in spinach (Spinacia oleracea), maize (Zea mays), and Chlamydomonas reinhardtii F-60 chloroplasts with emphasis on the hexose kinases. Plant Physiol 102:587–593

    PubMed  CAS  Google Scholar 

  • Sitte P (1993) Symbiogenic evolution of complex cells and complex plastids. Eur J Protist 29:131–143

    Google Scholar 

  • Tso JY, Sun X-H, Wu R (1985) Structure of two Drosophila melanogaster glycerinaldehyde-3-phosphate dehydrogenase genes. J Biol Chem 260:8220–8228

    PubMed  CAS  Google Scholar 

  • Vermiglio A, Ravenel J, Peltier G (1990) Chlororespiration: a respiratory activity in the thylakoid membrane of microalgae and higher plants. In: Wiessner W, Robinson DG, Starr RC (eds) Cell walls and surfaces, reproduction, photosynthesis. Springer-Verlag, Berlin, pp 188–205

    Google Scholar 

  • von-Heijne G (1988) Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta 947:307–333

    Google Scholar 

  • von-Heijne G, Nishikawa K (1991) Chloroplast transit peptides. The perfect random coil? FEBS Lett 278:1–3

    Article  Google Scholar 

  • Zhou Y-H, Ragan MA (1994) Cloning and characterization of the nuclear gene encoding glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa. Curr Genet 26:79–86

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nucleotide sequence data (cDNAs) reported will appear in the DDBJ/EMBL/GenBank International Nucleotide Sequence Database under the accession numbers U40032 (GapCl, Guillardia theta), U40033 (CapC1, Pyrenomonas salina), U39873 (GapC2, Guillardia theta), and U39897 (GapC2, Pyrenomonas salina). Until recently Guillardia theta (original name Cryptomonas theta) has been erroneously called Cryptomonas phi due to a confusion of the two different organisms prior to the distribution of cultures to the international cryptomonad community (G. McFadden, publication in preparation)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liaud, MF., Brandt, U., Scherzinger, M. et al. Evolutionary origin of cryptomonad microalgae: Two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components. J Mol Evol 44 (Suppl 1), S28–S37 (1997). https://doi.org/10.1007/PL00000050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00000050

Key words

Navigation