Skip to main content
Log in

Vector-boson pair production at the LHC to \( \mathcal{O} \)(α 3) accuracy

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Building on earlier work on electroweak corrections to W-pair production, the first calculation of the full electroweak one-loop corrections to on-shell ZZ, W±Z and γγ production at hadron colliders is presented, explicitly taking into account the full vector-boson mass dependence. As a consequence, our results are valid in the whole energy range probed by LHC experiments. Until now, the electroweak corrections have only been known in dedicated high-energy approximations limited to a specific kinematic regime, in particular requiring high boson transverse momenta. Therefore, our results comprise an important and so far missing ingredient to improve on the theory predictions for these fundamental Standard-Model benchmark processes also at intermediate energies and small scattering angles, where actually the bulk of events is located. In case of Z-pair production we have also included the leptonic decays and the associated weak corrections in our analysis. For this particular channel, corrections of about −4% are observed even close to the production threshold. For hard scattering processes with momentum transfers of several hundred GeV one finds large negative corrections which may amount to several tens of percent and lead to significant distortions of transverse-momentum and rapidity distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ohnemus, An Order αs calculation of hadronic W ± Z production, Phys. Rev. D 44 (1991) 3477 [INSPIRE].

    ADS  Google Scholar 

  2. S. Frixione, A Next-to-leading order calculation of the cross-section for the production of W + W- pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [INSPIRE].

    Article  ADS  Google Scholar 

  3. J. Ohnemus, Hadronic Zγ production with QCD corrections and leptonic decays, Phys. Rev. D 51 (1995) 1068 [hep-ph/9407370] [INSPIRE].

    ADS  Google Scholar 

  4. J. Ohnemus, Hadronic ZZ, W W + and W ± Z production with QCD corrections and leptonic decays, Phys. Rev. D 50 (1994) 1931 [hep-ph/9403331] [INSPIRE].

    ADS  Google Scholar 

  5. L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s ) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].

    Article  ADS  Google Scholar 

  6. L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : Lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].

    ADS  Google Scholar 

  7. D. De Florian and A. Signer, W gamma and Z gamma production at hadron colliders, Eur. Phys. J. C 16 (2000) 105 [hep-ph/0002138] [INSPIRE].

    Article  ADS  Google Scholar 

  8. J.M. Campbell and R.K. Ellis, An Update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].

    ADS  Google Scholar 

  9. J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G. Chachamis, M. Czakon and D. Eiras, W Pair Production at the LHC. I. Two-loop Corrections in the High Energy Limit, JHEP 12 (2008) 003 [arXiv:0802.4028] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G. Chachamis, M. Czakon and D. Eiras, W Pair Production at the LHC. II. One-loop Squared Corrections in the High Energy Limit, arXiv:0806.3043 [INSPIRE].

  12. F. Campanario and S. Sapeta, WZ production beyond NLO for high-pT observables, Phys. Lett. B 718 (2012) 100 [arXiv:1209.4595] [INSPIRE].

    Article  ADS  Google Scholar 

  13. E.N. Glover and J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].

    Article  ADS  Google Scholar 

  14. C. Kao and D.A. Dicus, Production of W + W- from gluon fusion, Phys. Rev. D 43 (1991) 1555 [INSPIRE].

    ADS  Google Scholar 

  15. M. Dührssen, K. Jakobs, J. van der Bij and P. Marquard, The Process ggWW as a background to the Higgs signal at the LHC, JHEP 05 (2005) 064 [hep-ph/0504006] [INSPIRE].

    Article  Google Scholar 

  16. T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J.M. Campbell, R.K. Ellis and C. Williams, Gluon-Gluon Contributions to W+ W- Production and Higgs Interference Effects, JHEP 10 (2011) 005 [arXiv:1107.5569] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. G. Passarino, Higgs Interference Effects in ggZZ and their Uncertainty, JHEP 08 (2012) 146 [arXiv:1206.3824] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J.H. Kuhn and A. Penin, Sudakov logarithms in electroweak processes, hep-ph/9906545 [INSPIRE].

  20. V.S. Fadin, L. Lipatov, A.D. Martin and M. Melles, Resummation of double logarithms in electroweak high-energy processes, Phys. Rev. D 61 (2000) 094002 [hep-ph/9910338] [INSPIRE].

    ADS  Google Scholar 

  21. M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett. 84 (2000) 4810 [hep-ph/0001142] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.H. Kuhn, A. Penin and V.A. Smirnov, Summing up subleading Sudakov logarithms, Eur. Phys. J. C 17 (2000) 97 [hep-ph/9912503] [INSPIRE].

    Article  ADS  Google Scholar 

  23. W. Beenakker and A. Werthenbach, New insights into the perturbative structure of electroweak Sudakov logarithms, Phys. Lett. B 489 (2000) 148 [hep-ph/0005316] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. W. Beenakker and A. Werthenbach, Electroweak two loop Sudakov logarithms for on-shell fermions and bosons, Nucl. Phys. B 630 (2002) 3 [hep-ph/0112030] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. M. Melles, Subleading Sudakov logarithms in electroweak high-energy processes to all orders, Phys. Rev. D 63 (2001) 034003 [hep-ph/0004056] [INSPIRE].

    ADS  Google Scholar 

  26. M. Hori, H. Kawamura and J. Kodaira, Electroweak Sudakov at two loop level, Phys. Lett. B 491 (2000) 275 [hep-ph/0007329] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Denner, M. Melles and S. Pozzorini, Two loop electroweak angular dependent logarithms at high-energies, Nucl. Phys. B 662 (2003) 299 [hep-ph/0301241] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 1. Results, Eur. Phys. J. C 18 (2001) 461 [hep-ph/0010201] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 2. Factorization of collinear singularities, Eur. Phys. J. C 21 (2001) 63 [hep-ph/0104127] [INSPIRE].

    Article  ADS  Google Scholar 

  30. B. Feucht, J.H. Kuhn, A.A. Penin and V.A. Smirnov, Two loop Sudakov form-factor in a theory with mass gap, Phys. Rev. Lett. 93 (2004) 101802 [hep-ph/0404082] [INSPIRE].

    Article  ADS  Google Scholar 

  31. B. Jantzen, J.H. Kuhn, A.A. Penin and V.A. Smirnov, Two-loop electroweak logarithms, Phys. Rev. D 72 (2005) 051301 [Erratum ibid. D 74 (2006) 019901] [hep-ph/0504111] [INSPIRE].

  32. E. Accomando, A. Denner and S. Pozzorini, Electroweak correction effects in gauge boson pair production at the CERN LHC, Phys. Rev. D 65 (2002) 073003 [hep-ph/0110114] [INSPIRE].

    ADS  Google Scholar 

  33. E. Accomando, A. Denner and A. Kaiser, Logarithmic electroweak corrections to gauge-boson pair production at the LHC, Nucl. Phys. B 706 (2005) 325 [hep-ph/0409247] [INSPIRE].

    Article  ADS  Google Scholar 

  34. E. Accomando, A. Denner and C. Meier, Electroweak corrections to Wγ and Zγ production at the LHC, Eur. Phys. J. C 47 (2006) 125 [hep-ph/0509234] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J. Kuhn, F. Metzler, A. Penin and S. Uccirati, Next-to-Next-to-Leading Electroweak Logarithms for W-Pair Production at LHC, JHEP 06 (2011) 143 [arXiv:1101.2563] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. M. Lemoine and M. Veltman, Radiative Corrections to e + e W+ Win the Weinberg Model, Nucl. Phys. B 164 (1980) 445 [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Böhm, A. Denner, T. Sack, W. Beenakker, F.A. Berends et al., Electroweak Radiative Corrections to e + e W + W , Nucl. Phys. B 304 (1988) 463 [INSPIRE].

    Article  ADS  Google Scholar 

  38. J. Fleischer, F. Jegerlehner and M. Zralek, Radiative Corrections To Helicity Amplitudes For The Process e + e W + W , BI-TP-88-03 (1988).

  39. W. Beenakker, A. Denner, S. Dittmaier, R. Mertig and T. Sack, High-energy approximation for on-shell W pair production, Nucl. Phys. B 410 (1993) 245 [INSPIRE].

    Article  ADS  Google Scholar 

  40. W. Beenakker, F.A. Berends and A. Chapovsky, Radiative corrections to pair production of unstable particles: results for e + e four fermions, Nucl. Phys. B 548 (1999) 3 [hep-ph/9811481] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Jadach, W. Placzek, M. Skrzypek, B. Ward and Z. Was, The Monte Carlo program KoralW version 1.51 and the concurrent Monte Carlo KoralW and YFSWW3 with all background graphs and first order corrections to W pair production, Comput. Phys. Commun. 140 (2001) 475 [hep-ph/0104049] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  42. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Electroweak radiative corrections to e + e WW4 fermions in double pole approximation: The RACOONWW approach, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, RACOONWW1.3: A Monte Carlo program for four fermion production at e + e colliders, Comput. Phys. Commun. 153 (2003) 462 [hep-ph/0209330] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A. Denner, S. Dittmaier, M. Roth and L. Wieders, Complete electroweak O(α) corrections to charged-current e + e 4 fermion processes, Phys. Lett. B 612 (2005) 223 [Erratum ibid. B 704 (2011) 667-668] [hep-ph/0502063] [INSPIRE].

  45. A. Denner, S. Dittmaier, M. Roth and L. Wieders, Electroweak corrections to charged-current e + e 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504-507] [hep-ph/0505042] [INSPIRE].

  46. A. Bierweiler, T. Kasprzik and K [INSPIRE].

  47. A. Bierweiler, T. Kasprzik and J.H. Kuhn, Electroweak accuracy in V-pair production at the LHC, PoS(ICHEP2012)078 [arXiv:1208.3404] [INSPIRE].

  48. J. Kublbeck, M. Böhm and A. Denner, Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. H. Eck and J. Küblbeck, Guide to FeynArts 1.0, University of Würzburg, 1992.

  50. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  52. T. Hahn and C. Schappacher, The Implementation of the minimal supersymmetric standard model in FeynArts and FormCalc, Comput. Phys. Commun. 143 (2002) 54 [hep-ph/0105349] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  53. G. van Oldenborgh and J. Vermaseren, New Algorithms for One Loop Integrals, Z. Phys. C 46 (1990) 425 [INSPIRE].

    MathSciNet  Google Scholar 

  54. P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  56. S. Dittmaier and . Kramer, Michael, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].

    ADS  Google Scholar 

  57. K. Diener, S. Dittmaier and W. Hollik, Electroweak radiative corrections to deep inelastic neutrino scattering: Implications for NuTeV?, Phys. Rev. D 69 (2004) 073005 [hep-ph/0310364] [INSPIRE].

    ADS  Google Scholar 

  58. A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].

    ADS  Google Scholar 

  59. W. Stirling and E. Vryonidou, Electroweak corrections and Bloch-Nordsieck violations in 2-to-2 processes at the LHC, arXiv:1212.6537 [INSPIRE].

  60. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. M. Whalley, D. Bourilkov and R. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].

  62. A. Martin, R. Roberts, W. Stirling and R. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Roth and S. Weinzierl, QED corrections to the evolution of parton distributions, Phys. Lett. B 590 (2004) 190 [hep-ph/0403200] [INSPIRE].

    Article  ADS  Google Scholar 

  64. J. Layssac and F. Renard, High-energy behavior of γγ\( f\overline{f} \) processes in SM and MSSM, Phys. Rev. D 64 (2001) 053018 [hep-ph/0104205] [INSPIRE].

    ADS  Google Scholar 

  65. A. Denner, S. Dittmaier and M. Strobel, Radiative corrections to γγ\( t\overline{t} \) in the electroweak standard model, Phys. Rev. D 53 (1996) 44 [hep-ph/9507372] [INSPIRE].

    ADS  Google Scholar 

  66. J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, arXiv:1307.4331 [INSPIRE].

  67. M. Billóni, S. Dittmaier, B. Jager and C. Speckner, Next-to-leading order electroweak corrections to ppW + W 4 leptons at the LHC in double-pole approximation, arXiv:1310.1564 [INSPIRE].

  68. W. Beenacker, A. Denner and F.A. Berends, Gauge boson production in e+ e- collisions at high-energies, in Proceedings of e+ e- collisions at 500-GeV, Munich/Annecy/Hamburg, 1991, pt. A* 151.

  69. A. Denner, S. Dittmaier, M. Roth and L. Wieders, Electroweak corrections to charged-current e + e 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504-507] [hep-ph/0505042] [INSPIRE].

  70. A. Denner and S. Dittmaier, The Complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].

    Article  ADS  Google Scholar 

  71. S. Gieseke, T. Kasprzik and J.H. Kuhn, Vector-boson pair production at the LHC: Electroweak corrections in HERWIG++, arXiv:1310.2843 [INSPIRE].

  72. S. Gieseke, T. Kasprzik and J.H. Kühn, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Kasprzik.

Additional information

ArXiv ePrint: 1305.5402

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bierweiler, A., Kasprzik, T. & Kühn, J.H. Vector-boson pair production at the LHC to \( \mathcal{O} \)(α 3) accuracy. J. High Energ. Phys. 2013, 71 (2013). https://doi.org/10.1007/JHEP12(2013)071

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)071

Keywords

Navigation