Skip to main content
Log in

New light species and the CMB

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the effects of new light species on the Cosmic Microwave Background. In the massless limit, these effects can be parameterized in terms of a single number, the relativistic degrees of freedom. We perform a thorough survey of natural, minimal models containing new light species and numerically calculate the precise contribution of each of these models to this number in the framework of effective field theory. After reviewing the relevant details of early universe thermodynamics, we provide a map between the parameters of any particular theory and the predicted effective number of degrees of freedom. We then use this map to interpret the recent results from the Cosmic Microwave Background survey done by the Planck satellite. Using this data, we present new constraints on the parameter space of several models containing new light species. Future measurements of the Cosmic Microwave Background can be used with this map to further constrain the parameter space of all such models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Jungman, M. Kamionkowski, A. Kosowsky and D.N. Spergel, Cosmological parameter determination with microwave background maps, Phys. Rev. D 54 (1996) 1332 [astro-ph/9512139] [INSPIRE].

    ADS  Google Scholar 

  2. A. Dolgov, Neutrinos in cosmology, Phys. Rept. 370 (2002) 333 [hep-ph/0202122] [INSPIRE].

    Article  ADS  Google Scholar 

  3. G. Steigman, Precision neutrino counting, astro-ph/0108148 [INSPIRE].

  4. R.E. Lopez, S. Dodelson, A. Heckler and M.S. Turner, Precision detection of the cosmic neutrino background, Phys. Rev. Lett. 82 (1999) 3952 [astro-ph/9803095] [INSPIRE].

    Article  ADS  Google Scholar 

  5. S. Riemer-Sørensen, D. Parkinson and T.M. Davis, What is half a neutrino? Reviewing cosmological constraints on neutrinos and dark radiation, arXiv:1301.7102 [INSPIRE].

  6. N.Y. Gnedin and O.Y. Gnedin, Cosmological neutrino background revisited, Astrophys. J. 509 (1998) 11 [astro-ph/9712199] [INSPIRE].

    Article  ADS  Google Scholar 

  7. G. Mangano, G. Miele, S. Pastor and M. Peloso, A precision calculation of the effective number of cosmological neutrinos, Phys. Lett. B 534 (2002) 8 [astro-ph/0111408] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Hannestad and J. Madsen, Neutrino decoupling in the early universe, Phys. Rev. D 52 (1995) 1764 [astro-ph/9506015] [INSPIRE].

    ADS  Google Scholar 

  9. W.R. Yueh and J.R. Buchler, Scattering functions for neutrino transport, Astrophys. Space Sci. 39 (1976) 429.

    Article  ADS  Google Scholar 

  10. A. Heckler, Astrophysical applications of quantum corrections to the equation of state of a plasma, Phys. Rev. D 49 (1994) 611 [INSPIRE].

    ADS  Google Scholar 

  11. A. Dolgov and M. Fukugita, Nonequilibrium effect of the neutrino distribution on primordial helium synthesis, Phys. Rev. D 46 (1992) 5378 [INSPIRE].

    ADS  Google Scholar 

  12. A. Dolgov, S. Hansen and D. Semikoz, Nonequilibrium corrections to the spectra of massless neutrinos in the early universe, Nucl. Phys. B 503 (1997) 426 [hep-ph/9703315] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Dodelson and M.S. Turner, Nonequilibrium neutrino statistical mechanics in the expanding universe, Phys. Rev. D 46 (1992) 3372 [INSPIRE].

    ADS  Google Scholar 

  14. N. Rana and B.M. Seifert, Effect of neutrino heating in the early universe on neutrino decoupling temperatures and nucleosynthesis, Phys. Rev. D 44 (1991) 393 [INSPIRE].

    ADS  Google Scholar 

  15. M.A. Herrera and S. Hacyan, Relaxation time of neutrinos in the early universe, Astrophys. J. 336 (1989) 539.

    Article  ADS  Google Scholar 

  16. S. Esposito, G. Miele, S. Pastor, M. Peloso and O. Pisanti, Nonequilibrium spectra of degenerate relic neutrinos, Nucl. Phys. B 590 (2000) 539 [astro-ph/0005573] [INSPIRE].

    Article  ADS  Google Scholar 

  17. WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].

    Article  Google Scholar 

  18. Atacama Cosmology Telescope collaboration, J.L. Sievers et al., The Atacama Cosmology Telescope: cosmological parameters from three seasons of data, JCAP 10 (2013) 060 [arXiv:1301.0824] [INSPIRE].

    Google Scholar 

  19. Z. Hou et al., Constraints on cosmology from the Cosmic Microwave Background power spectrum of the 2500-square degree SPT-SZ survey, arXiv:1212.6267 [INSPIRE].

  20. E. Di Valentino et al., Tickling the CMB damping tail: scrutinizing the tension between the ACT and SPT experiments, Phys. Rev. D 88 (2013) 023501 [arXiv:1301.7343] [INSPIRE].

    ADS  Google Scholar 

  21. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  22. J. Hamann, J. Lesgourgues and G. Mangano, Using BBN in cosmological parameter extraction from CMB: a forecast for PLANCK, JCAP 03 (2008) 004 [arXiv:0712.2826] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Galli et al., Constraining fundamental physics with future CMB experiments, Phys. Rev. D 82 (2010) 123504 [arXiv:1005.3808] [INSPIRE].

    ADS  Google Scholar 

  24. K. Nakayama, F. Takahashi and T.T. Yanagida, A theory of extra radiation in the universe, Phys. Lett. B 697 (2011) 275 [arXiv:1010.5693] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R. Diamanti, E. Giusarma, O. Mena, M. Archidiacono and A. Melchiorri, Dark radiation and interacting scenarios, Phys. Rev. D 87 (2013) 063509 [arXiv:1212.6007] [INSPIRE].

    ADS  Google Scholar 

  26. G. Steigman, Primordial nucleosynthesis in the precision cosmology era, Ann. Rev. Nucl. Part. Sci. 57 (2007) 463 [arXiv:0712.1100] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Pospelov and J. Pradler, Big bang nucleosynthesis as a probe of new physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 539 [arXiv:1011.1054] [INSPIRE].

    Article  ADS  Google Scholar 

  28. F. Iocco, G. Mangano, G. Miele, O. Pisanti and P.D. Serpico, Primordial nucleosynthesis: from precision cosmology to fundamental physics, Phys. Rept. 472 (2009) 1 [arXiv:0809.0631] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R. Bowen, S.H. Hansen, A. Melchiorri, J. Silk and R. Trotta, The impact of an extra background of relativistic particles on the cosmological parameters derived from microwave background anisotropies, Mon. Not. Roy. Astron. Soc. 334 (2002) 760 [astro-ph/0110636] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Bashinsky and U. Seljak, Neutrino perturbations in CMB anisotropy and matter clustering, Phys. Rev. D 69 (2004) 083002 [astro-ph/0310198] [INSPIRE].

    ADS  Google Scholar 

  31. Z. Hou, R. Keisler, L. Knox, M. Millea and C. Reichardt, How massless neutrinos affect the cosmic microwave background damping tail, Phys. Rev. D 87 (2013) 083008 [arXiv:1104.2333] [INSPIRE].

    ADS  Google Scholar 

  32. J. Silk, Cosmic black body radiation and galaxy formation, Astrophys. J. 151 (1968) 459 [INSPIRE].

    Article  ADS  Google Scholar 

  33. R. Sachs and A. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J. 147 (1967) 73 [Gen. Rel. Grav. 39 (2007) 1929] [INSPIRE].

  34. A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J. 538 (2000) 473 [astro-ph/9911177] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C. Howlett, A. Lewis, A. Hall and A. Challinor, CMB power spectrum parameter degeneracies in the era of precision cosmology, JCAP 04 (2012) 027 [arXiv:1201.3654] [INSPIRE].

    Article  ADS  Google Scholar 

  36. E.W. Kolb and M.S. Turner, The early universe, first ed., Westview Press, U.S.A. (1990) [INSPIRE].

    MATH  Google Scholar 

  37. S. Dodelson, Modern cosmology, first ed., Academic Press, Amsterdam The Netherlands (2003) [INSPIRE].

    Google Scholar 

  38. S. Weinberg, Cosmology, first ed., Oxford University Press, Oxford U.K. (2008) [INSPIRE].

    MATH  Google Scholar 

  39. J. Bernstein, Kinetic theory in the expanding universe, first ed., Cambridge U.S.A. (1988) [INSPIRE].

  40. L. Levkova, QCD at nonzero temperature and density, PoS(LATTICE 2011)011 [arXiv:1201.1516] [INSPIRE].

  41. D.H. Rischke, The quark gluon plasma in equilibrium, Prog. Part. Nucl. Phys. 52 (2004) 197 [nucl-th/0305030] [INSPIRE].

    Article  ADS  Google Scholar 

  42. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].

  43. S. Leupold et al., Bulk properties of strongly interacting matter, Lect. Notes Phys. 814 (2011) 39 [INSPIRE].

    Article  ADS  Google Scholar 

  44. Y. Izotov and T. Thuan, The primordial abundance of 4 He: evidence for non-standard big bang nucleosynthesis, Astrophys. J. 710 (2010) L67 [arXiv:1001.4440] [INSPIRE].

    Article  ADS  Google Scholar 

  45. E. Aver, K.A. Olive and E.D. Skillman, A new approach to systematic uncertainties and self-consistency in helium abundance determinations, JCAP 05 (2010) 003 [arXiv:1001.5218] [INSPIRE].

    Article  ADS  Google Scholar 

  46. R. Keisler et al., A measurement of the damping tail of the Cosmic Microwave Background power spectrum with the South Pole Telescope, Astrophys. J. 743 (2011) 28 [arXiv:1105.3182] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Pospelov and J. Pradler, Metastable GeV-scale particles as a solution to the cosmological lithium problem, Phys. Rev. D 82 (2010) 103514 [arXiv:1006.4172] [INSPIRE].

    ADS  Google Scholar 

  48. B.D. Fields, The primordial lithium problem, Ann. Rev. Nucl. Part. Sci. 61 (2011) 47 [arXiv:1203.3551] [INSPIRE].

    Article  ADS  Google Scholar 

  49. M. Kusakabe, A. Balantekin, T. Kajino and Y. Pehlivan, Solution to big-bang nucleosynthesis in hybrid axion dark matter model, Phys. Lett. B 718 (2013) 704 [arXiv:1202.5603] [INSPIRE].

    Article  ADS  Google Scholar 

  50. K. Kohri, S. Ohta, J. Sato, T. Shimomura and M. Yamanaka, Allowed slepton intergenerational mixing in light of light element abundances, Phys. Rev. D 86 (2012) 095024 [arXiv:1208.5533] [INSPIRE].

    ADS  Google Scholar 

  51. R.H. Cyburt et al., Gravitino decays and the cosmological lithium problem in light of the LHC Higgs and supersymmetry searches, JCAP 05 (2013) 014 [arXiv:1303.0574] [INSPIRE].

    Article  ADS  Google Scholar 

  52. D. Hooper, F.S. Queiroz and N.Y. Gnedin, Non-thermal dark matter mimicking an additional neutrino species in the early universe, Phys. Rev. D 85 (2012) 063513 [arXiv:1111.6599] [INSPIRE].

    ADS  Google Scholar 

  53. M. Gonzalez-Garcia, V. Niro and J. Salvado, Dark radiation and decaying matter, JHEP 04 (2013) 052 [arXiv:1212.1472] [INSPIRE].

    Article  ADS  Google Scholar 

  54. J. Hasenkamp and J. Kersten, Dark radiation from particle decay: cosmological constraints and opportunities, JCAP 08 (2013) 024 [arXiv:1212.4160] [INSPIRE].

    Article  ADS  Google Scholar 

  55. M. Blennow, E. Fernandez-Martinez, O. Mena, J. Redondo and P. Serra, Asymmetric dark matter and dark radiation, JCAP 07 (2012) 022 [arXiv:1203.5803] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J.L. Menestrina and R.J. Scherrer, Dark radiation from particle decays during big bang nucleosynthesis, Phys. Rev. D 85 (2012) 047301 [arXiv:1111.0605] [INSPIRE].

    ADS  Google Scholar 

  57. W. Fischler and J. Meyers, Dark radiation emerging after big bang nucleosynthesis?, Phys. Rev. D 83 (2011) 063520 [arXiv:1011.3501] [INSPIRE].

    ADS  Google Scholar 

  58. O.E. Bjaelde, S. Das and A. Moss, Origin of ΔN eff as a result of an interaction between dark radiation and dark matter, JCAP 10 (2012) 017 [arXiv:1205.0553] [INSPIRE].

    Article  Google Scholar 

  59. M. Cicoli, J.P. Conlon and F. Quevedo, Dark radiation in LARGE volume models, Phys. Rev. D 87 (2013) 043520 [arXiv:1208.3562] [INSPIRE].

    ADS  Google Scholar 

  60. P. Graf and F.D. Steffen, Axions and saxions from the primordial supersymmetric plasma and extra radiation signatures, JCAP 02 (2013) 018 [arXiv:1208.2951] [INSPIRE].

    Article  ADS  Google Scholar 

  61. P. Graf and F.D. Steffen, Dark radiation and dark matter in supersymmetric axion models with high reheating temperature, arXiv:1302.2143 [INSPIRE].

  62. T. Higaki and F. Takahashi, Dark radiation and dark matter in large volume compactifications, JHEP 11 (2012) 125 [arXiv:1208.3563] [INSPIRE].

    Article  ADS  Google Scholar 

  63. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

    ADS  Google Scholar 

  64. H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. H. Georgi, D.B. Kaplan and L. Randall, Manifesting the invisible axion at low-energies, Phys. Lett. B 169 (1986) 73 [INSPIRE].

    Article  ADS  Google Scholar 

  66. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    Google Scholar 

  67. G.G. Raffelt, Stars as laboratories for fundamental physics, first ed., Univ. of Chicago Press, Chicago U.S.A. (1996) [INSPIRE].

  68. G.G. Raffelt, Particle physics from stars, Ann. Rev. Nucl. Part. Sci. 49 (1999) 163 [hep-ph/9903472] [INSPIRE].

    Article  ADS  Google Scholar 

  69. G.G. Raffelt, Axions: motivation, limits and searches, J. Phys. A 40 (2007) 6607 [hep-ph/0611118] [INSPIRE].

    ADS  MATH  Google Scholar 

  70. M. Cicoli, M. Goodsell and A. Ringwald, The type IIB string axiverse and its low-energy phenomenology, JHEP 10 (2012) 146 [arXiv:1206.0819] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  71. G. Raffelt, Neutrinos and the stars, arXiv:1201.1637 [INSPIRE].

  72. C.M. Ho and R.J. Scherrer, Anapole dark matter, Phys. Lett. B 722 (2013) 341 [arXiv:1211.0503] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  73. L.A. Anchordoqui, H. Goldberg and G. Steigman, Right-handed neutrinos as the dark radiation: status and forecasts for the LHC, Phys. Lett. B 718 (2013) 1162 [arXiv:1211.0186] [INSPIRE].

    Article  ADS  Google Scholar 

  74. A. Solaguren-Beascoa and M. Gonzalez-Garcia, Dark radiation confronting LHC in Z models, Phys. Lett. B 719 (2013) 121 [arXiv:1210.6350] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  75. L.A. Anchordoqui and H. Goldberg, Neutrino cosmology after WMAP 7-year data and LHC first Z bounds, Phys. Rev. Lett. 108 (2012) 081805 [arXiv:1111.7264] [INSPIRE].

    Article  ADS  Google Scholar 

  76. N. Engelhardt, A.E. Nelson and J.R. Walsh, Apparent CPT violation in neutrino oscillation experiments, Phys. Rev. D 81 (2010) 113001 [arXiv:1002.4452] [INSPIRE].

    ADS  Google Scholar 

  77. ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector, JHEP 04 (2013) 075 [arXiv:1210.4491] [INSPIRE].

    ADS  Google Scholar 

  78. ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 10 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-147, CERN, Geneva Switzerland (2012).

  79. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].

    ADS  Google Scholar 

  80. S. Blinnikov, A. Dolgov, L. Okun and M. Voloshin, How strong can the coupling of leptonic photons be?, Nucl. Phys. B 458 (1996) 52 [hep-ph/9505444] [INSPIRE].

    Article  ADS  Google Scholar 

  81. B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

    Article  ADS  Google Scholar 

  82. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  83. S. Abel, M. Goodsell, J. Jaeckel, V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1)’s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  84. M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally light hidden photons in LARGE volume string compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [INSPIRE].

    Article  ADS  Google Scholar 

  85. M. Cicoli, M. Goodsell, J. Jaeckel and A. Ringwald, Testing string vacua in the lab: from a hidden CMB to dark forces in flux compactifications, JHEP 07 (2011) 114 [arXiv:1103.3705] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  86. A.E. Nelson and J. Walsh, Short baseline neutrino oscillations and a new light gauge boson, Phys. Rev. D 77 (2008) 033001 [arXiv:0711.1363] [INSPIRE].

    ADS  Google Scholar 

  87. D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Atomic dark matter, JCAP 05 (2010) 021 [arXiv:0909.0753] [INSPIRE].

    Article  ADS  Google Scholar 

  88. K.M. Belotsky, M.Y. Khlopov, S. Legonkov and K. Shibaev, Effects of new long-range interaction: recombination of relic heavy neutrinos and antineutrinos, Grav. Cosmol. 11 (2005) 27 [astro-ph/0504621] [INSPIRE].

    ADS  Google Scholar 

  89. U. Franca, R.A. Lineros, J. Palacio and S. Pastor, Probing interactions within the dark matter sector via extra radiation contributions, Phys. Rev. D 87 (2013) 123521 [arXiv:1303.1776] [INSPIRE].

    ADS  Google Scholar 

  90. J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].

    Article  ADS  Google Scholar 

  91. B.A. Dobrescu, Massless gauge bosons other than the photon, Phys. Rev. Lett. 94 (2005) 151802 [hep-ph/0411004] [INSPIRE].

    Article  ADS  Google Scholar 

  92. S. Hoffmann, Paraphotons and axions: similarities in stellar emission and detection, Phys. Lett. B 193 (1987) 117 [INSPIRE].

    Article  ADS  Google Scholar 

  93. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton Univ. Pr., Princeton U.S.A. (1992) [INSPIRE].

    MATH  Google Scholar 

  94. K. Abazajian et al., Light sterile neutrinos: a white paper, arXiv:1204.5379 [INSPIRE].

  95. R. Mohapatra, S. Nasri and H.-B. Yu, Seesaw right handed neutrino as the sterile neutrino for LSND, Phys. Rev. D 72 (2005) 033007 [hep-ph/0505021] [INSPIRE].

    ADS  Google Scholar 

  96. A.E. Nelson, Effects of CP-violation from neutral heavy fermions on neutrino oscillations and the LSND/MiniBooNE anomalies, Phys. Rev. D 84 (2011) 053001 [arXiv:1010.3970] [INSPIRE].

    ADS  Google Scholar 

  97. E. Kuflik, S.D. McDermott and K.M. Zurek, Neutrino phenomenology in a 3 + 1 + 1 framework, Phys. Rev. D 86 (2012) 033015 [arXiv:1205.1791] [INSPIRE].

    ADS  Google Scholar 

  98. C.M. Ho and R.J. Scherrer, Sterile neutrinos and light dark matter save each other, Phys. Rev. D 87 (2013) 065016 [arXiv:1212.1689] [INSPIRE].

    ADS  Google Scholar 

  99. M. Cirelli, G. Marandella, A. Strumia and F. Vissani, Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments, Nucl. Phys. B 708 (2005) 215 [hep-ph/0403158] [INSPIRE].

    Article  ADS  Google Scholar 

  100. L.M. Krauss, C. Lunardini and C. Smith, Neutrinos, WMAP and BBN, submitted to Phys. Rev. D (2010) [arXiv:1009.4666] [INSPIRE].

  101. S. Hannestad, I. Tamborra and T. Tram, Thermalisation of light sterile neutrinos in the early universe, JCAP 07 (2012) 025 [arXiv:1204.5861] [INSPIRE].

    Article  ADS  Google Scholar 

  102. A. Mirizzi, N. Saviano, G. Miele and P.D. Serpico, Light sterile neutrino production in the early universe with dynamical neutrino asymmetries, Phys. Rev. D 86 (2012) 053009 [arXiv:1206.1046] [INSPIRE].

    ADS  Google Scholar 

  103. T.D. Jacques, L.M. Krauss and C. Lunardini, Additional light sterile neutrinos and cosmology, Phys. Rev. D 87 (2013) 083515 [arXiv:1301.3119] [INSPIRE].

    ADS  Google Scholar 

  104. J. Lesgourgues and S. Pastor, Neutrino mass from cosmology, Adv. High Energy Phys. 2012 (2012) 608515 [arXiv:1212.6154] [INSPIRE].

    Article  MATH  Google Scholar 

  105. M. Blennow and E. Fernandez-Martinez, Parametrization of seesaw models and light sterile neutrinos, Phys. Lett. B 704 (2011) 223 [arXiv:1107.3992] [INSPIRE].

    Article  ADS  Google Scholar 

  106. V. Barger, J.P. Kneller, P. Langacker, D. Marfatia and G. Steigman, Hiding relativistic degrees of freedom in the early universe, Phys. Lett. B 569 (2003) 123 [hep-ph/0306061] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  107. E. Castorina et al., Cosmological lepton asymmetry with a nonzero mixing angle θ 13, Phys. Rev. D 86 (2012) 023517 [arXiv:1204.2510] [INSPIRE].

    ADS  Google Scholar 

  108. C. Boehm, M.J. Dolan and C. McCabe, Increasing N eff with particles in thermal equilibrium with neutrinos, JCAP 12 (2012) 027 [arXiv:1207.0497] [INSPIRE].

    Google Scholar 

  109. M. Jamin and M.E. Lautenbacher, TRACER version 1.1: a Mathematica package for gamma algebra in arbitrary dimensions, Comput. Phys. Commun. 74 (1993) 265 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew T. Walters.

Additional information

ArXiv ePrint: 1303.5379

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brust, C., Kaplan, D.E. & Walters, M.T. New light species and the CMB. J. High Energ. Phys. 2013, 58 (2013). https://doi.org/10.1007/JHEP12(2013)058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)058

Keywords

Navigation