Skip to main content
Log in

Abstract

The standard model of cosmology, i.e., the big bang theory, along with cosmic microwave background (CMB), also predicts the existence of a cosmic neutrino background (C\(\nu \)B). This C\(\nu \)B is comprised of ultra low energy neutrinos. Their detection can provide us the information about the Universe at a stage earlier than the CMB can provide. In this short review, we present basic theoretical properties and constraints on C\(\nu \)B and subsequently present a quick review of the experimental proposals for its detection. In addition to this, we also discuss the effect of generalized neutrino interactions on the C\(\nu \)B detection via the neutrino capture process at PTOLEMY.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been used.]

References

  1. R.H. Dicke, P.J.E. Peebles, P.G. Roll, D.T. Wilkinson, Cosmic black-body radiation. Astrophys. J. 142, 414–419 (1965). https://doi.org/10.1086/148306

    Article  ADS  Google Scholar 

  2. S. Weinberg, Universal neutrino degeneracy. Phys. Rev. 128, 1457–1473 (1962). https://doi.org/10.1103/PhysRev.128.1457

    Article  ADS  Google Scholar 

  3. E. Baracchini et al., PTOLEMY: a proposal for thermal relic detection of massive neutrinos and directional detection of MeV dark matter (2018) arXiv:1808.01892 [physics.ins-det]

  4. L. Stodolsky, Speculations on detection of the neutrino sea. Phys. Rev. Lett. 34, 110 (1975). https://doi.org/10.1103/PhysRevLett.34.110. (Erratum: Phys. Rev. Lett. 34, 508 (1975))

    Article  ADS  Google Scholar 

  5. G. Duda, G. Gelmini, S. Nussinov, Expected signals in relic neutrino detectors. Phys. Rev. D 64, 122001 (2001). https://doi.org/10.1103/PhysRevD.64.122001. arXiv:hep-ph/0107027

    Article  ADS  Google Scholar 

  6. V. Domcke, M. Spinrath, Detection prospects for the Cosmic Neutrino Background using laser interferometers. JCAP 06, 055 (2017). https://doi.org/10.1088/1475-7516/2017/06/055. arXiv:1703.08629 [astro-ph.CO]

    Article  ADS  Google Scholar 

  7. C.S. Nugroho, probing cosmic neutrino background charge via unconventional interferometer (2023) arXiv:2302.08246 [hep-ph]

  8. K. Asteriadis, A.Q. Triviño, M. Spinrath, Bremsstrahlung from the cosmic neutrino background (2022) arXiv:2208.01207 [hep-ph]

  9. B.R. Safdi, M. Lisanti, J. Spitz, J.A. Formaggio, Annual modulation of cosmic relic neutrinos. Phys. Rev. D 90(4), 043001 (2014). https://doi.org/10.1103/PhysRevD.90.043001. arXiv:1404.0680 [astro-ph.CO]

    Article  ADS  Google Scholar 

  10. R. Opher, Coherent scattering of cosmic neutrinos. Astron. Astrophys. 37(1), 135–137 (1974)

    ADS  Google Scholar 

  11. R.R. Lewis, Coherent detector for low-energy neutrinos. Phys. Rev. D 21, 663 (1980). https://doi.org/10.1103/PhysRevD.21.663

    Article  ADS  Google Scholar 

  12. V.F. Shvartsman, V.B. Braginskii, S.S. Gershtein, I.B. Zeldovich, M.I. Khlopov, Possibility of detecting relict massive neutrinos. ZhETF Pisma Redaktsiiu 36, 224–226 (1982)

    ADS  Google Scholar 

  13. J.D. Shergold, Updated detection prospects for relic neutrinos using coherent scattering. JCAP 11(11), 052 (2021). https://doi.org/10.1088/1475-7516/2021/11/052. arXiv:2109.07482 [hep-ph]

    Article  ADS  Google Scholar 

  14. V. Brdar, P.S.B. Dev, R. Plestid, A. Soni, A new probe of relic neutrino clustering using cosmogenic neutrinos. Phys. Lett. B 833, 137358 (2022). https://doi.org/10.1016/j.physletb.2022.137358. arXiv:2207.02860 [hep-ph]

    Article  Google Scholar 

  15. M. Yoshimura, N. Sasao, M. Tanaka, Experimental method of detecting relic neutrino by atomic de-excitation. Phys. Rev. D 91(6), 063516 (2015). https://doi.org/10.1103/PhysRevD.91.063516. arXiv:1409.3648 [hep-ph]

    Article  ADS  Google Scholar 

  16. M. Bauer, J.D. Shergold, Relic neutrinos at accelerator experiments. Phys. Rev. D 104(8), 083039 (2021). https://doi.org/10.1103/PhysRevD.104.083039. arXiv:2104.12784 [hep-ph]

    Article  ADS  Google Scholar 

  17. J.L. Bernal, A. Caputo, F. Villaescusa-Navarro, M. Kamionkowski, Searching for the radiative decay of the cosmic neutrino background with line-intensity mapping. Phys. Rev. Lett. 127(13), 131102 (2021). https://doi.org/10.1103/PhysRevLett.127.131102. arXiv:2103.12099 [hep-ph]

    Article  ADS  Google Scholar 

  18. D.A. Dicus, E.W. Kolb, A.M. Gleeson, E.C.G. Sudarshan, V.L. Teplitz, M.S. Turner, Primordial nucleosynthesis including radiative, coulomb, and finite temperature corrections to weak rates. Phys. Rev. D 26, 2694 (1982). https://doi.org/10.1103/PhysRevD.26.2694

    Article  ADS  Google Scholar 

  19. K. Enqvist, K. Kainulainen, V. Semikoz, Neutrino annihilation in hot plasma. Nucl. Phys. B 374, 392–404 (1992). https://doi.org/10.1016/0550-3213(92)90359-J

    Article  ADS  Google Scholar 

  20. S. Dodelson, M.S. Turner, Nonequilibrium neutrino statistical mechanics in the expanding universe. Phys. Rev. D 46, 3372–3387 (1992). https://doi.org/10.1103/PhysRevD.46.3372

    Article  ADS  Google Scholar 

  21. S. Hannestad, J. Madsen, Nucleosynthesis and the mass of tau-neutrino revisited. Phys. Rev. D 54, 7894–7897 (1996). https://doi.org/10.1103/PhysRevD.54.7894

    Article  ADS  Google Scholar 

  22. K. Akita, M. Yamaguchi, A precision calculation of relic neutrino decoupling. JCAP 08, 012 (2020). https://doi.org/10.1088/1475-7516/2020/08/012. arXiv:2005.07047 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  23. D.J. Fixsen, The temperature of the cosmic microwave background. Astrophys. J. 707, 916–920 (2009). https://doi.org/10.1088/0004-637X/707/2/916. arXiv:0911.1955 [astro-ph.CO]

    Article  ADS  Google Scholar 

  24. A.J. Long, C. Lunardini, E. Sabancilar, Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential. JCAP 08, 038 (2014). https://doi.org/10.1088/1475-7516/2014/08/038. arXiv:1405.7654 [hep-ph]

    Article  ADS  Google Scholar 

  25. A. Ringwald, Y.Y.Y. Wong, Gravitational clustering of relic neutrinos and implications for their detection. JCAP 12, 005 (2004). https://doi.org/10.1088/1475-7516/2004/12/005. arXiv:hep-ph/0408241

    Article  ADS  Google Scholar 

  26. P. Mertsch, G. Parimbelli, P.F. Salas, S. Gariazzo, J. Lesgourgues, S. Pastor, Neutrino clustering in the Milky Way and beyond. JCAP 01, 015 (2020). https://doi.org/10.1088/1475-7516/2020/01/015. arXiv:1910.13388 [astro-ph.CO]

    Article  ADS  Google Scholar 

  27. M. Bauer, J.D. Shergold, Limits on the cosmic neutrino background. JCAP 01, 003 (2023). https://doi.org/10.1088/1475-7516/2023/01/003. arXiv:2207.12413 [hep-ph]

    Article  ADS  Google Scholar 

  28. S. Kumaran et al., First direct evidence of the CNO fusion cycle in the Sun with Borexino. PoS ICRC2021, 1109 (2021) https://doi.org/10.22323/1.395.1109

  29. D. Baumann, F. Beutler, R. Flauger, D. Green, A. Slosar, M. Vargas-Magaña, B. Wallisch, C. Yèche, First constraint on the neutrino-induced phase shift in the spectrum of baryon acoustic oscillations. Nat. Phys. 15, 465–469 (2019). https://doi.org/10.1038/s41567-019-0435-6. arXiv:1803.10741 [astro-ph.CO]

    Article  Google Scholar 

  30. R. Mohammadi, J. Khodagholizadeh, M. Sadegh, S.-S. Xue, B-mode polarization of the CMB and the cosmic neutrino background. Phys. Rev. D 93(12), 125029 (2016). https://doi.org/10.1103/PhysRevD.93.125029. arXiv:1602.00237 [astro-ph.CO]

    Article  ADS  Google Scholar 

  31. E. Vitagliano, I. Tamborra, G. Raffelt, Grand unified neutrino spectrum at earth: sources and spectral components. Rev. Mod. Phys. 92, 45006 (2020). https://doi.org/10.1103/RevModPhys.92.045006. arXiv:1910.11878 [astro-ph.HE]

    Article  Google Scholar 

  32. C. Yanagisawa, Looking for cosmic neutrino background. Front. Phys. 2, 30 (2014). https://doi.org/10.3389/fphy.2014.00030

    Article  Google Scholar 

  33. S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity (Wiley, New York, 1972)

    Google Scholar 

  34. A.G. Cocco, G. Mangano, M. Messina, Low energy antineutrino detection using neutrino capture on EC decaying nuclei. Phys. Rev. D 79, 053009 (2009). https://doi.org/10.1103/PhysRevD.79.053009. arXiv:0903.1217 [hep-ph]

    Article  ADS  Google Scholar 

  35. A.G. Cocco, G. Mangano, M. Messina, Probing low energy neutrino backgrounds with neutrino capture on beta decaying nuclei. JCAP 06, 015 (2007). https://doi.org/10.1088/1475-7516/2007/06/015. arXiv:hep-ph/0703075

    Article  ADS  Google Scholar 

  36. M.G. Betti et al., Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case. JCAP 07, 047 (2019). https://doi.org/10.1088/1475-7516/2019/07/047. arXiv:1902.05508 [astro-ph.CO]

    Article  ADS  Google Scholar 

  37. T.J. Weiler, Relic neutrinos, Z bursts, and cosmic rays above 10**20-eV. In: 2nd International Conference Physics Beyond the Standard Model: Beyond the Desert 99: Accelerator, Nonaccelerator and Space Approaches, pp. 1085–1106 (1999)

  38. P.F. Salas, S. Gariazzo, J. Lesgourgues, S. Pastor, Calculation of the local density of relic neutrinos. JCAP 09, 034 (2017). https://doi.org/10.1088/1475-7516/2017/09/034. arXiv:1706.09850 [astro-ph.CO]

    Article  Google Scholar 

  39. J. Zhang, X. Zhang, Gravitational clustering of cosmic relic neutrinos in the Milky Way. Nat. Commun. 9, 1833 (2018). https://doi.org/10.1038/s41467-018-04264-y. arXiv:1712.01153 [astro-ph.CO]

    Article  ADS  Google Scholar 

  40. H. Primakoff, S.P. Rosen, Double beta decay. Rept. Prog. Phys. 22(1), 121–166 (1959). https://doi.org/10.1088/0034-4885/22/1/305

    Article  ADS  Google Scholar 

  41. S.S. Masood, S. Nasri, J. Schechter, M.A. Tortola, J.W.F. Valle, C. Weinheimer, Exact relativistic beta decay endpoint spectrum. Phys. Rev. C 76, 045501 (2007). https://doi.org/10.1103/PhysRevC.76.045501. arXiv:0706.0897 [hep-ph]

    Article  ADS  Google Scholar 

  42. I.K. Banerjee, U.K. Dey, N. Nath, S.S. Shariff, Testing generalized neutrino interactions with PTOLEMY (2023) arXiv:2304.02505 [hep-ph]

  43. L. Wolfenstein, Neutrino oscillations in matter. Phys. Rev. D 17, 2369–2374 (1978). https://doi.org/10.1103/PhysRevD.17.2369

    Article  ADS  Google Scholar 

  44. M. Lindner, W. Rodejohann, X.-J. Xu, Coherent Neutrino-Nucleus Scattering and new Neutrino Interactions. JHEP 03, 097 (2017). https://doi.org/10.1007/JHEP03(2017)097. arXiv:1612.04150 [hep-ph]

    Article  ADS  Google Scholar 

  45. S. Weinberg, Charge symmetry of weak interactions. Phys. Rev. 112, 1375–1379 (1958). https://doi.org/10.1103/PhysRev.112.1375

    Article  ADS  Google Scholar 

  46. V. Cirigliano, S. Gardner, B. Holstein, Beta decays and non-standard interactions in the LHC era. Prog. Part. Nucl. Phys. 71, 93–118 (2013). https://doi.org/10.1016/j.ppnp.2013.03.005. arXiv:1303.6953 [hep-ph]

    Article  ADS  Google Scholar 

  47. P.O. Ludl, W. Rodejohann, Direct neutrino mass experiments and exotic charged current interactions. JHEP 06, 040 (2016). https://doi.org/10.1007/JHEP06(2016)040. arXiv:1603.08690 [hep-ph]

    Article  ADS  Google Scholar 

  48. S.S. Gershtein, Y.B. Zeldovich, Meson corrections in the theory of beta decay. Zh. Eksp. Teor. Fiz. 29, 698–699 (1955)

    Google Scholar 

  49. R.P. Feynman, M. Gell-Mann, Theory of Fermi interaction. Phys. Rev. 109, 193–198 (1958). https://doi.org/10.1103/PhysRev.109.193

    Article  ADS  MathSciNet  Google Scholar 

  50. E. Berkowitz et al., An accurate calculation of the nucleon axial charge with lattice QCD (2017) arXiv:1704.01114 [hep-lat]

  51. M. González-Alonso, J. Martin Camalich, Isospin breaking in the nucleon mass and the sensitivity of \(\beta \) decays to new physics. Phys. Rev. Lett. 112(4), 042501 (2014). https://doi.org/10.1103/PhysRevLett.112.042501. arXiv:1309.4434 [hep-ph]

    Article  ADS  Google Scholar 

  52. T. Bhattacharya, V. Cirigliano, R. Gupta, H.-W. Lin, B. Yoon, Neutron electric dipole moment and tensor charges from lattice QCD. Phys. Rev. Lett. 115(21), 212002 (2015). https://doi.org/10.1103/PhysRevLett.115.212002. arXiv:1506.04196 [hep-lat]

    Article  ADS  Google Scholar 

  53. J. Angrik et al., KATRIN Design Report (2004)

  54. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011) https://doi.org/10.1140/epjc/s10052-011-1554-0arXiv:1007.1727 [physics.data-an]. [Erratum: Eur.Phys.J.C 73, 2501 (2013)]

  55. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations. JHEP 09, 178 (2020). https://doi.org/10.1007/JHEP09(2020)178. arXiv:2007.14792 [hep-ph]

    Article  ADS  Google Scholar 

  56. NuFit 5.1. http://www.nu-fit.org/. Accessed 9 Dec 2022

Download references

Acknowledgements

UKD thanks I K Banerjee for useful discussions. A clarifying comment from the anonymous referee is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjal Kumar Dey.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, U.K. Cosmic neutrino background: a minireview. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01101-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01101-w

Navigation