Skip to main content
Log in

Angular profile of particle emission from a higher-dimensional black hole: analytic results

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

During the spin-down phase of the life of a higher-dimensional black hole, the emission of particles on the brane exhibits a strong angular variation with respect to the rotation axis of the black hole. It has been suggested that this angular variation is the observable that could disentangle the dependence of the radiation spectra on the number of extra dimensions and angular momentum of the black hole. Working in the low-energy regime, we have employed analytical formulae for the greybody factors, angular eigenvalues and eigenfunctions of fermions and gauge bosons, and studied the characteristics of the corresponding angular profiles of emission spectra in terms of only a few dominant partial modes. We have confirmed that, in the low-energy channel, the emitted gauge bosons become aligned to the rotation axis of the produced black hole while fermions form an angle with the rotation axis whose exact value depends on the angular-momentum of the black hole. In the case of scalar fields, we demonstrated the existence of a “spherically-symmetric zone” in the low-energy regime that is followed by the concentration of the emission on the equatorial plane as the energy increases, again in total agreement with the exact numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

    ADS  Google Scholar 

  2. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE].

    ADS  Google Scholar 

  3. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].

    ADS  Google Scholar 

  4. T. Banks and W. Fischler, A model for high-energy scattering in quantum gravity, hep-th/9906038 [INSPIRE].

  5. S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206-206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. P. Kanti, Black holes in theories with large extra dimensions: a review, Int. J. Mod. Phys. A 19 (2004) 4899 [hep-ph/0402168] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. P. Kanti, Black holes at the LHC, Lect. Notes Phys. 769 (2009) 387 [arXiv:0802.2218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. P. Kanti, Brane-world black holes, J. Phys. Conf. Ser. 189 (2009) 012020 [arXiv:0903.2147] [INSPIRE].

    Article  ADS  Google Scholar 

  9. P. Kanti, Footprints of higher-dimensional decaying black holes, Rom. J. Phys. 57 (2012) 96 [arXiv:1204.2371] [INSPIRE].

    Google Scholar 

  10. M. Cavaglia, Black hole and brane production in TeV gravity: A Review, Int. J. Mod. Phys. A 18 (2003) 1843 [hep-ph/0210296] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. G.L. Landsberg, Black holes at future colliders and in cosmic rays, Eur. Phys. J. C 33 (2004) S927 [hep-ex/0310034] [INSPIRE].

    Article  ADS  Google Scholar 

  12. K. Cheung, Collider phenomenology for a few models of extra dimensions, hep-ph/0409028 [INSPIRE].

  13. S. Hossenfelder, What black holes can teach us, hep-ph/0412265 [INSPIRE].

  14. A.S. Majumdar and N. Mukherjee, Braneworld black holes in cosmology and astrophysics, Int. J. Mod. Phys. D 14 (2005) 1095 [astro-ph/0503473] [INSPIRE].

    ADS  Google Scholar 

  15. E. Winstanley, Hawking radiation from rotating brane black holes, arXiv:0708.2656 [INSPIRE].

  16. S.C. Park, Black holes and the LHC: a review, Prog. Part. Nucl. Phys. 67 (2012) 617 [arXiv:1203.4683] [INSPIRE].

    Article  ADS  Google Scholar 

  17. C.M. Harris, Physics beyond the standard model: Exotic leptons and black holes at future colliders, hep-ph/0502005 [INSPIRE].

  18. P. Kanti and J. March-Russell, Calculable corrections to brane black hole decay. 1. The scalar case, Phys. Rev. D 66 (2002) 024023 [hep-ph/0203223] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. P. Kanti and J. March-Russell, Calculable corrections to brane black hole decay. 2. Greybody factors for spin 1/2 and 1, Phys. Rev. D 67 (2003) 104019 [hep-ph/0212199] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. V.P. Frolov and D. Stojkovic, Black hole radiation in the brane world and recoil effect, Phys. Rev. D 66 (2002) 084002 [hep-th/0206046] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. C.M. Harris and P. Kanti, Hawking radiation from a (4 + n)-dimensional black hole: exact results for the Schwarzschild phase, JHEP 10 (2003) 014 [hep-ph/0309054] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. A.S. Cornell, W. Naylor and M. Sasaki, Graviton emission from a higher-dimensional black hole, JHEP 02 (2006) 012 [hep-th/0510009] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. V. Cardoso, M. Cavaglia and L. Gualtieri, Black hole particle emission in higher-dimensional spacetimes, Phys. Rev. Lett. 96 (2006) 071301 [Erratum ibid. 96 (2006) 219902] [hep-th/0512002] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. V. Cardoso, M. Cavaglia and L. Gualtieri, Hawking emission of gravitons in higher dimensions: non-rotating black holes, JHEP 02 (2006) 021 [hep-th/0512116] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Creek, O. Efthimiou, P. Kanti and K. Tamvakis, Graviton emission in the bulk from a higher-dimensional Schwarzschild black hole, Phys. Lett. B 635 (2006) 39 [hep-th/0601126] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. D.-C. Dai, N. Kaloper, G.D. Starkman and D. Stojkovic, Evaporation of a black hole off of a tense brane, Phys. Rev. D 75 (2007) 024043 [hep-th/0611184] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. P. Kanti, J. Grain and A. Barrau, Bulk and brane decay of a (4 + n)-dimensional Schwarzschild-de-Sitter black hole: scalar radiation, Phys. Rev. D 71 (2005) 104002 [hep-th/0501148] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. J. Grain, A. Barrau and P. Kanti, Exact results for evaporating black holes in curvature-squared lovelock gravity: Gauss-Bonnet greybody factors, Phys. Rev. D 72 (2005) 104016 [hep-th/0509128] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. P. Nicolini and E. Winstanley, Hawking emission from quantum gravity black holes, JHEP 11 (2011) 075 [arXiv:1108.4419] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. C. Harris and P. Kanti, Hawking radiation from a (4 + n)-dimensional rotating black hole, Phys. Lett. B 633 (2006) 106 [hep-th/0503010] [INSPIRE].

    ADS  Google Scholar 

  31. G. Duffy, C. Harris, P. Kanti and E. Winstanley, Brane decay of a (4 + n)-dimensional rotating black hole: spin-0 particles, JHEP 09 (2005) 049 [hep-th/0507274] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Casals, P. Kanti and E. Winstanley, Brane decay of a (4 + n)-dimensional rotating black hole. II. Spin-1 particles, JHEP 02 (2006) 051 [hep-th/0511163] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. M. Casals, S. Dolan, P. Kanti and E. Winstanley, Brane decay of a (4 + n)-dimensional rotating black hole. III. Spin-1/2 particles, JHEP 03 (2007) 019 [hep-th/0608193] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. D. Ida, K.-y. Oda and S.C. Park, Rotating black holes at future colliders: greybody factors for brane fields, Phys. Rev. D 67 (2003) 064025 [Erratum ibid. D 69 (2004) 049901] [hep-th/0212108] [INSPIRE].

    ADS  Google Scholar 

  35. D. Ida, K.-y. Oda and S.C. Park, Rotating black holes at future colliders. II. Anisotropic scalar field emission, Phys. Rev. D 71 (2005) 124039 [hep-th/0503052] [INSPIRE].

    ADS  Google Scholar 

  36. D. Ida, K.-y. Oda and S.C. Park, Rotating black holes at future colliders. III. Determination of black hole evolution, Phys. Rev. D 73 (2006) 124022 [hep-th/0602188] [INSPIRE].

    ADS  Google Scholar 

  37. S. Creek, O. Efthimiou, P. Kanti and K. Tamvakis, Greybody factors for brane scalar fields in a rotating black-hole background, Phys. Rev. D 75 (2007) 084043 [hep-th/0701288] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. S. Creek, O. Efthimiou, P. Kanti and K. Tamvakis, Greybody factors in a rotating black-hole background. II. Fermions and gauge bosons, Phys. Rev. D 76 (2007) 104013 [arXiv:0707.1768] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. V.P. Frolov and D. Stojkovic, Quantum radiation from a five-dimensional rotating black hole, Phys. Rev. D 67 (2003) 084004 [gr-qc/0211055] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. H. Nomura, S. Yoshida, M. Tanabe and K.-i. Maeda, The fate of a five-dimensional rotating black hole via Hawking radiation, Prog. Theor. Phys. 114 (2005) 707 [hep-th/0502179] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. T. Kobayashi, M. Nozawa and Y.-i. Takamizu, Bulk scalar emission from a rotating black hole pierced by a tense brane, Phys. Rev. D 77 (2008) 044022 [arXiv:0711.1395] [INSPIRE].

    ADS  Google Scholar 

  42. S. Chen, B. Wang, R.-K. Su and W.-Y.P. Hwang, Greybody factors for rotating black holes on codimension-2 branes, JHEP 03 (2008) 019 [arXiv:0711.3599] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. S. Creek, O. Efthimiou, P. Kanti and K. Tamvakis, Scalar emission in the bulk in a rotating black hole background, Phys. Lett. B 656 (2007) 102 [arXiv:0709.0241] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. M. Casals, S. Dolan, P. Kanti and E. Winstanley, Bulk emission of scalars by a rotating black hole, JHEP 06 (2008) 071 [arXiv:0801.4910] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. H. Kodama, Superradiance and instability of black holes, Prog. Theor. Phys. Suppl. 172 (2008) 11 [arXiv:0711.4184] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. H. Kodama, Perturbations and stability of higher-dimensional black holes, Lect. Notes Phys. 769 (2009) 427 [arXiv:0712.2703] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. J. Doukas, H. Cho, A. Cornell and W. Naylor, Graviton emission from simply rotating Kerr-de Sitter black holes: transverse traceless tensor graviton modes, Phys. Rev. D 80 (2009) 045021 [arXiv:0906.1515] [INSPIRE].

    ADS  Google Scholar 

  48. P. Kanti, H. Kodama, R. Konoplya, N. Pappas and A. Zhidenko, Graviton emission in the bulk by a simply rotating black hole, Phys. Rev. D 80 (2009) 084016 [arXiv:0906.3845] [INSPIRE].

    ADS  Google Scholar 

  49. E. Jung and D. Park, Bulk versus brane in the absorption and emission: 5D rotating black hole case, Nucl. Phys. B 731 (2005) 171 [hep-th/0506204] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. E. Jung and D. Park, Bulk versus brane in the Hawking radiation of graviton: black holes radiate mainly into the bulk when n ≥ 3, Mod. Phys. Lett. A 22 (2007) 1635 [hep-th/0612043] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. M.O. Sampaio, Charge and mass effects on the evaporation of higher-dimensional rotating black holes, JHEP 10 (2009) 008 [arXiv:0907.5107] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. M.O. Sampaio, Distributions of charged massive scalars and fermions from evaporating higher-dimensional black holes, JHEP 02 (2010) 042 [arXiv:0911.0688] [INSPIRE].

    Article  ADS  Google Scholar 

  53. P. Kanti and N. Pappas, Emission of massive scalar fields by a higher-dimensional rotating black-hole, Phys. Rev. D 82 (2010) 024039 [arXiv:1003.5125] [INSPIRE].

    ADS  Google Scholar 

  54. J.A. Frost et al., Phenomenology of production and decay of spinning extra-dimensional black holes at hadron colliders, JHEP 10 (2009) 014 [arXiv:0904.0979] [INSPIRE].

    Article  ADS  Google Scholar 

  55. D.-C. Dai et al., BlackMax: a black-hole event generator with rotation, recoil, split branes and brane tension, Phys. Rev. D 77 (2008) 076007 [arXiv:0711.3012] [INSPIRE].

    ADS  Google Scholar 

  56. A. Flachi, M. Sasaki and T. Tanaka, Spin polarization effects in micro black hole evaporation, JHEP 05 (2009) 031 [arXiv:0809.1006] [INSPIRE].

    Article  ADS  Google Scholar 

  57. M. Casals, S. Dolan, P. Kanti and E. Winstanley, Angular profile of emission of non-zero spin fields from a higher-dimensional black hole, Phys. Lett. B 680 (2009) 365 [arXiv:0907.1511] [INSPIRE].

    ADS  Google Scholar 

  58. M.O.P. Sampaio, Angular correlations in TeV-gravity black hole events, JHEP 03 (2012) 066 [arXiv:1201.2422] [INSPIRE].

    Article  ADS  Google Scholar 

  59. D.C. Dai and D. Stojkovic, Analytic explanation of the strong spin-dependent amplification in Hawking radiation from rotating black holes, JHEP 08 (2010) 016 [arXiv:1008.4586] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. R.C. Myers and M. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. S. Teukolsky, Rotating black holesSeparable wave equations for gravitational and electromagnetic perturbations, Phys. Rev. Lett. 29 (1972) 1114 [INSPIRE].

    Article  ADS  Google Scholar 

  62. S.A. Teukolsky, Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J. 185 (1973) 635 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. W.H. Press and S.A. Teukolsky, Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric, Astrophys. J. 185 (1973) 649 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. E.D. Fackerell and R.G. Grossman, Spin-weighted angular spheroidal functions, J. Math. Phys. 18 (1977) 1849.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. A.A. Starobinskii and S.M. Churilov, Amplification of electromagnetic and gravitational waves scattered by a rotating black hole, Zh. Eksp. Teor. Fiz. 65 (1973) 3 [Sov. Phys. JETP 38 (1974)1].

    ADS  Google Scholar 

  66. E. Seidel, A comment on the eigenvalues of spin weighted spheroidal functions, Class. Quant. Grav. 6 (1989) 1057 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. E. Berti, V. Cardoso and M. Casals, Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions, Phys. Rev. D 73 (2006) 024013 [Erratum ibid. D 73 (2006) 109902] [gr-qc/0511111] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  68. E.W. Leaver, An analytic representation for the quasi-normal modes of Kerr black holes, Proc. Roy. Soc. London A 402 (1985) 285.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiota Kanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanti, P., Pappas, N. Angular profile of particle emission from a higher-dimensional black hole: analytic results. J. High Energ. Phys. 2012, 19 (2012). https://doi.org/10.1007/JHEP12(2012)019

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2012)019

Keywords

Navigation